

Arbeitsgemeinschaft Grünland und Futterbau der Gesellschaft für Pflanzenbauwissenschaften e.V.

2. Weihenstephaner Grünlandgespräche

Freising Campus Weihenstephan

18. und 19. März 2024

Impressum

Herausgeber: Arbeitsgemeinschaft Grünland und Futterbau (AGGF)

der Gesellschaft für Pflanzenbauwissenschaften (GPW)

Vorsitzender: Dr. Stephan Hartmann,

Am Gereuth 4, 85354 Freising

Internet: <u>www.AGGF.de</u>

Redaktion: AGGF

1. Auflage: Februar 2025

Druck: nur Online

Schutzgebühr: ,00 Euro

organisiert durch die LfL und die AGGF
– unterstützt durch die TUM und die HSWT

Weihenstephaner Grünlandgespräche am 18. und 19. März 2024 in Freising Themen der Fachtagung

Aktuelles zu Grünland und Feldfutterbauprojekten an der LfL Wertschöpfung durch Fotovoltaik und Artenvielfalt im Grünland

Inhaltsverzeichnis

1	GRASSWORKS was funktioniert bei der Grünlandrenaturierung in Deutschland und warum?1
2	Wiesenmeisterschaft Vom Konzept zur etablierten Größe19
3	Moorverträgliche Bewirtschaftung durch Feuchtgrünland mittlerer Nutzungsintensität und Saatguteinsatz
4	Nachhaltige Almwirtschaft im Klimawandel47
4.1	Nachhaltige Almwirtschaft im Klimawandel
5	WebGras Schätzung der potenziellen Futterqualität des Grundfutters für den ersten Aufwuchs in Südtiroler Dauerwiesen 70
6	Belüftungsheuproduktuion und Heumilch82
7	Sortenprüfung Prüfung und Ergebnisse aus Sicht der Länder 100
8	Rechtliche Situation Agrovoltaik auf dem Grünland und anlaufendes Projekt in Bayern109
9	Vergleich von Fotovoltaiksystemen auf Grünlandflächen in verschiedenen Klimaregionen Österreichs124
10	Fotovoltaik im Grünland anlaufende Projekte in Baden Württemberg und Sachsen128
10.1	Projekt Agri-PV auf Dauergrünland im Rahmen der Modellregion Agri- PV Baden-Württemberg
10.2	Projektbeschreibung zur Forschungs- und Demonstrationsanlage Agri-PV am Lehr- und Versuchsgut Köllitsch
11	Resümee und Ausblick137

1 GRASSWORKS was funktioniert bei der Grünlandrenaturierung in Deutschland und warum?

Johannes Kollmann, Jonas Trotz & Miriam Wiesmeier (TUM)

Abb. 1: Titelblatt GRASSWORKS

Hintergrund: Artenreiches Grünland

- GRASSWORKS | Einleitung

- Hohe Pflanzendiversität 1
- Lebensraum (u.a. Wildbienen)²
- Multifunktional Landschaftshaushalt 3

ТШП

Wilsonet al. (2012) Journal of Vegetation Science Kearns et al. (1998) Annual Review in Ecologynd Systematics

Abb. 2: Artenreiches Grünland Teil 1

ТШП

Hintergrund: Artenreiches Grünland

- Hohe Pflanzendiversität
- Lebensraum (u.a. Wildbienen)
- Multifunktional Landschaftshaushalt
- Anthropozoogen geprägter Lebensraum 1,2
- Erhaltung durch extensive Nutzung²
- Gefährdung 1,2,3

GRASSWORKS | Einleitung

- ¹ Poschlod& WallisDeVries(2002) Biological Conservation. ² Tischew &Hölzel (2019) Renaturierungsökologie ³ Dengleret al. (2014) Agriculture, Ecosystems Ænvironment.

Abb. 3: Artenreiches Grünland Teil 2

Abb. 4: Grünlandgefährdung

ТШП

Hintergrund: Bestäubung als Ökosystemleistung

- Rückgang von Bestäubern (inkl. Wildbienen) 1
- Bestäubung als Schlüsselfunktion in Ökosystemen²
- 88 % der Blütenpflanzen weltweit 3
- Jährlicher Wert von 235-577 Mrd. US \$4

GRASSWORKS | Einleitung

- ¹ SánchezBayo & Wyckhuys (2019) Biological Conservation
 ² Kearns et al. (1999) Annual ReviewinEcologyand Systematics
 ³ Ollerfonet al. (2011) Oikos
 ⁴ Potts et al. (2018) Nature

Abb. 5: Bestäubung als Ökosystemleistung

Hintergrund: Bestäubung als Ökosystemleistung

- Rückgang von Bestäubern (inkl. Wildbienen)
- Bestäubung als Schlüsselfunktion in Ökosystemen
- 88 % der Blütenpflanzen weltweit
- Jährlicher Wert von 235-577 Mrd. US \$

Herausforderung:

- Förderung der funktionellen Diversität von Bestäubern
- Verstetigung der Bestäubungsleistung zum Erhalt der Funktionalität terrestrischer Ökosysteme

GRASSWORKS | Einleitung

Abb. 6: Bestäubung als Ökosystemleistung, Herausforderung

ТШП

Hintergrund: Bestäubung als Ökosystemleistung

- · Rückgang von Bestäubern (inkl. Wildbienen)
- Bestäubung als Schlüsselfunktion in Ökosystemen
- · 88 % der Blütenpflanzen weltweit
- Jährlicher Wert von 235–577 Mrd. US \$

Herausforderung:

- Förderung der funktionellen Diversität von Bestäubern
- Verstetigung der Bestäubungsleistung zum Erhalt der Funktionalität terrestrischer Ökosysteme
- → Grünlandrenaturierung^{1,2}

GRASSWORKS | Einleitung

¹ Dengleret al. (2014) Agriculture, Ecosystems & Environmen

3

ПШ

Abb. 7: Bestäubung als Ökosystemleistung, Grünlandrenaturierung

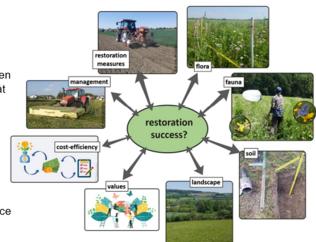
Das Projekt ...

- ➤ Transdisziplinäre und multiregionale Forschung ...
 ... ein integrativer, sozio-ökologischer Beitrag zur
 Grünlandrenaturierung
 https://grassworksprojekt.de
 - LEUPHANA

GRASSWORKS | Einleitung

Abb. 8: Was funktioniert bei der Grünlandrenaturierung in Deutschland und warum?

Was interessiert uns in diesem Projekt?


5

Forschung:

- · Beurteilung des Renaturierungserfolgs
- · Ökologische und sozial -ökonomische Faktoren
- · Biodiversität und Landschaftsmultifunktionalität
- · Verstehen von Governance-Strukturen

Anwendung:

- > Stakeholder Analysen
- > Informations und Beratungsinstrumente
- > Verbessertes Engagement der Akteure
- > Empfehlungen für eine effektivere Governance

GRASSWORKS | Einleitung

Abb. 9: Was interessiert uns in diesem Projekt?

Abb. 10: Theoretischer Rahmen

GRASSWORKS – transdisziplinär und multiregional

Drei Modellregionen:

Nord Leuphana Universität Lüneburg

Ise-Niederung u. Südheide

Zentrum Hochschule Bernburg

Biosphärenreservat Karstlandschaft Südharz

Süd Technischen Universität München
Donau-Isar-Niederung u. Niederbayern

LEUPHANA

CHOCKCHUR Anhalt

Anal Draway of Agree forward

To the control of Agree forward

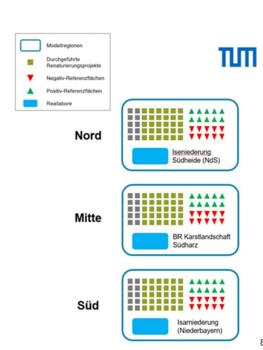
To the c

GRASSWORKS | Einleitung

Abb. 11: GRASSWORKS – transdisziplinär und multiregional

Forschungsdesign

Post-hoc Bewertung von renaturiertem Grünland


- 40 renaturierte Flächen
- 10 Negativreferenzen (degradiertes Grünland)
- 10 Positivreferenzen (artenreiche Wiesen)
- Feldarbeit 2022 und 2023
- Vegetation, Tagfalter, Wildbienen, Boden, Landschaft

Reallabore

- Transdisziplinärer Ansatz
- Modelanwendung und wissenschaftliches Monitoring von Renaturierungsprojekten

GRASSWORKS | Methoden

Abb. 12: Forschungsdesign

Unterschiede der Renaturierungsflächen

ТИП

- · Bodenfeuchtegradient
- Vorherige Landnutzung
- Vorbereitung
 - Gehölzentfernung
 - Nährstoffreduktion
 - Pflügen, Grubbern, Eggen
 - Oberbodenabtrag
- · Pflanzenmaterial und Pflege
 - Direkternte (Heutransfer)
 - Regionale Samenmischung
 - Kultivarmischung
 - Angepasste Bewirtschaftung

GRASSWORKS | Methoden

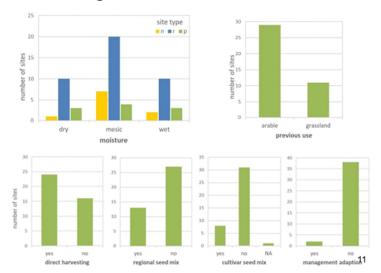


Abb. 13: Unterschiede der Renaturierungsflächen

Sozio-ökonomische Daten

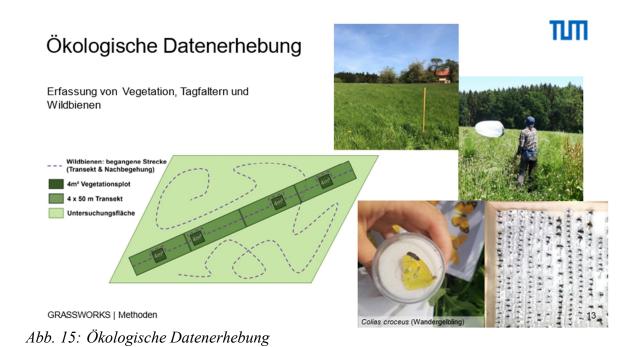
Soziale Erhebungen

- Stakeholderanalyse : Wer ist involviert?
- Befragungen
- Ko-kreation mit den Stakeholdern
- Wert der Grünlandrenaturierung: intrinsisch, instrumental und relational
- Was ist erfolgreiche Renaturierung aus sozial -ökologischer Perspektive?

- ...

Ökonomische Erhebungen

- Erfassung der Renaturierungsmethode und Landnutzung der 120 Flächen
- Ökologische Kosten -Effizienz
- Zahlungsbereitschaft für Grünlandrenaturierung


- ...

GRASSWORKS | Methoden

Abb. 14: Sozio-ökonomische Daten

Ökologische Daten

- Kontaktvegetation und -landschaft
 - Standardisierte Begehung per Landnutzungstyp
 - Liste der Pflanzenarten → Indikatoren der Biodiversität
 - Konnektivität, strukturelle Elemente ightarrow Thünen Institut
- Blütendeckung
 - Wichtiger Faktor für Bestäuberdiversität und -abundanz
 - Standardisierte Fotos der Probeflächen während der Insektenaufnahmen
 - Automatisierte Bildanalyse

GRASSWORKS | Methoden

Abb. 16: Ökologische Daten

14

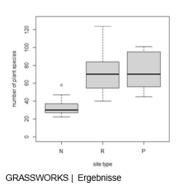
ТШП

Bodenerhebungen

- Proben f
 ür SOC, N, pH, Textur
- · Ringproben für Bodendichte
- · Bestimmung der mikrobiellen Biomasse

Ziele

- Einfluss der Nährstoffverfügbarkeit
- Analyse von Kohlenstoffspeicher und -umsatz



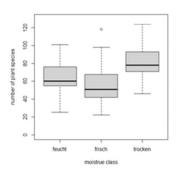

GRASSWORKS | Methoden

Abb. 17: Bodenerhebungen

Unterschiede der Pflanzen-Artenzahl

- 65 ± 24 Pflanzenarten pro Fläche
- Renaturierungsflächen ähneln den Positivreferenzen
- Höhere Artenzahlen wenn trocken -magerer Boden
- Mahdgutübertragung am besten

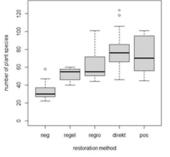


Abb. 18: Unterschiede der Pflanzen-Artenzahl

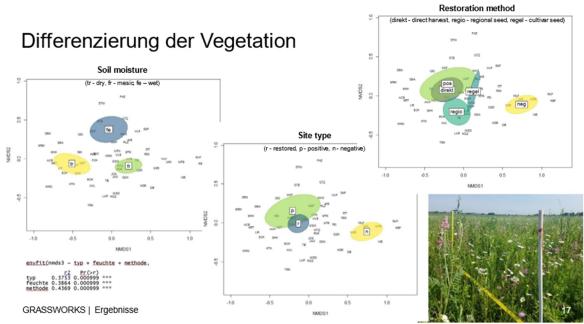


Abb. 19: Differenzierung der Vegetation

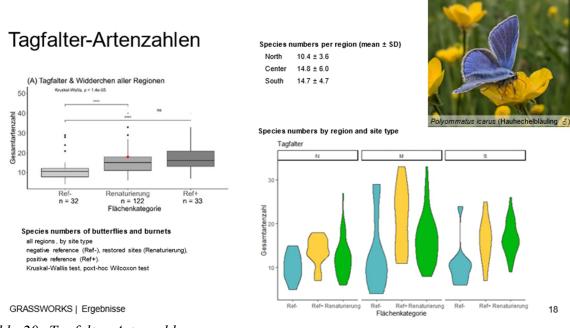


Abb. 20: Tagfalter-Artenzahlen

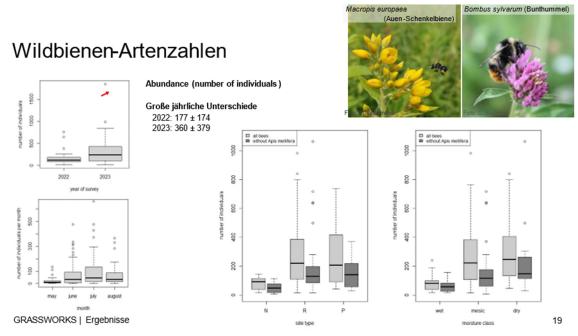
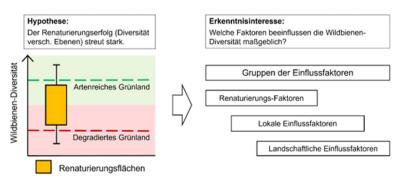



Abb. 21: Wildbienen-Artenzahlen

ТШ

Vertiefung: Steuernde Faktoren Wildbienen-Diversität

Große Spanne an Flächen unterschiedlicher Ausprägungen

GRASSWORKS | Wildbienen - Vertiefung

Abb. 22: Vertiefung: Steuernde Faktoren Wildbienen-Diversität Teil 1

ТШП

Vertiefung: Steuernde Faktoren Wildbienen-Diversität

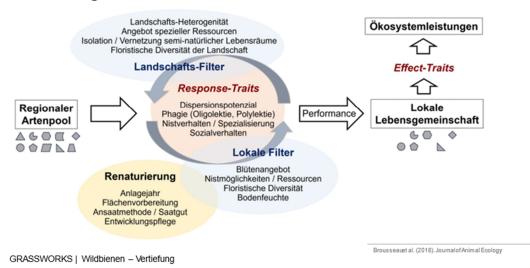
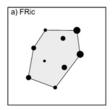
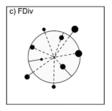


Abb. 23: Vertiefung: Steuernde Faktoren Wildbienen-Diversität Teil 2


тип


21

Maß der Wildbienen-Diversität

Zielvariablen:

- Taxonomische Wildbienendiversität (Artenanzahl)
- · Funktionelle Vielfalt (Fric)
- Funktionelle Divergenz (FDiv)

GRASSWORKS | Wildbienen - Methoden

Villégeret al. (2008) Ecology

Abb. 24: Maß der Wildbienen-Diversität

Lokaler Einfluss auf die Wildbienen-Diversität

Einflussfaktoren	Taxonom . Diversi	tät sqrt (FRic)	FDiv
Floristische Diversität	F = 4,9*	F = 3,6 ^(*)	F = 1,6
Floristische D		oristische Diversität	AtGA of the second of the seco

GRASSWORKS | Wildbienen - Ergebnisse

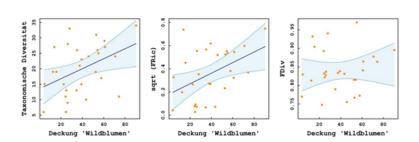

23

Abb. 25: Lokaler Einfluss auf die Wildbienen-Diversität Floristische Diversität

Lokaler Einfluss auf die Wildbienen-Diversität

Einflussfaktoren	Taxonom . Diversität	sqrt (FRic)	FDiv
Floristische Diversität	F = 4,9*	F = 3,6 ^(*)	F = 1,6
Deckung 'Wildblumen'	F = 8,2**	F = 9,6**	F = 0,5

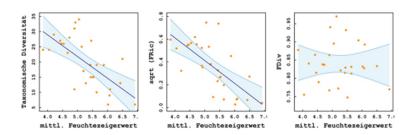

GRASSWORKS | Wildbienen - Ergebnisse

Abb. 26: Lokaler Einfluss auf die Wildbienen-Diversität Deckung 'Wildblumen'

Lokaler Einfluss auf die Wildbienen-Diversität

Einflussfaktoren	Taxonom . Diversität	sqrt (FRic)	FDiv
Floristische Diversität	F = 4,9*	F = 3,6 ^(±)	F = 1,6
Deckung 'Wildblumen'	F = 8,2**	F = 9,6**	F = 0,5
Mittl . Feuchtezeigerwert	F = 10,8**	F = 13,6**	F = 0,1

GRASSWORKS | Wildbienen - Ergebnisse

25

Abb. 27: Lokaler Einfluss auf die Wildbienen-Diversität Mittl. Feuchtezeigerwert

Lokaler Einfluss auf die Wildbienen-Diversität

ANOVA – multiple lineare	ANOVA – multiple lineare Regression				
Einflussfaktoren	Taxonom . Diversität	sqrt (FRic)	FDiv		
Floristische Diversität	F = 4,9*	F = 3,6(*)	F = 1,6		
Deckung 'Wildblumen'	F = 8,2**	F = 9,6**	F = 0.5		
Mittl . Feuchtezeigerwert	F = 10,8**	F = 13,6**	F = 0,1		
sqrt (Anteil Offenboden)	F = 0,3	F = 0.5	F = 0.9		

GRASSWORKS | Wildbienen - Ergebnisse

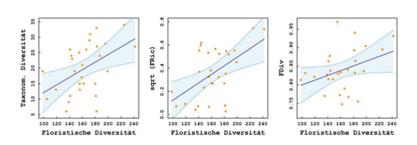

26

Abb. 28: Lokaler Einfluss auf die Wildbienen-Diversität sqrt (Anteil Offenboden)

Landschaftlicher Einfluss auf die Wildbienen-Diversität

ANOVA – multiple lineare Regression				
Einflussfaktoren	Taxonom . Diversität	sqrt (FRic)	FDiv	
Floristische Diversität	F = 4,7*	F = 7,4*	F = 7,4*	

GRASSWORKS | Wildbienen - Ergebnisse

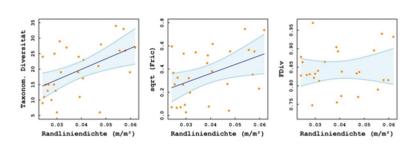

27

Abb. 29: Landschaftlicher Einfluss auf die Wildbienen-Diversität Floristische Diversität

Landschaftlicher Einfluss auf die Wildbienen-Diversität

Einflussfaktoren	Taxonom . Diversität	sqrt (FRic)	FDiv
Floristische Diversität	F = 4,7*	F = 7,4*	F = 7,4*
Randliniendichte	F = 13,6**	F = 8,0**	F = 0,3

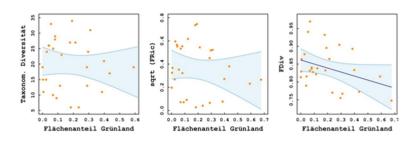

GRASSWORKS | Wildbienen - Ergebnisse

Abb. 30: Landschaftlicher Einfluss auf die Wildbienen-Diversität Randliniendichte

Landschaftlicher Einfluss auf die Wildbienen-Diversität

Einflussfaktoren	Taxonom . Diversität	sqrt (FRic)	FDiv
Floristische Diversität	F = 4,7*	F = 7,4*	F = 7,4*
Randliniendichte	F = 13,6**	F = 8,0**	F = 0,3
Flächenanteil Grünland	F = 3,7	F = 3,3	F = 4,6*

GRASSWORKS | Wildbienen - Ergebnisse

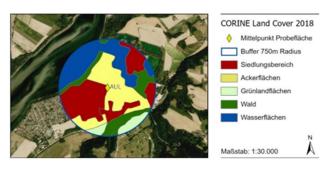

29

Abb. 31: Landschaftlicher Einfluss auf die Wildbienen-Diversität Flächenanteil Grünland

Landschaftlicher Einfluss auf die Wildbienen-Diversität

Einflussfaktoren	Taxonom . Diversität	sqrt (FRic)	FDiv
Floristische Diversität	F = 4,7*	F = 7,4*	F = 7,4*
Randliniendichte	F = 13,6**	F = 8,0**	F = 0,3
Flächenanteil Grünland	F = 3,7	F = 3,3	F = 4,6*
Flächenanteil Siedlung	F = 0,1	F = 0,2	F = 1,0
Flächenanteil Wald	F = 3,2	F = 0.0	F = 0,2

GRASSWORKS | Wildbienen - Ergebnisse

Abb. 32: Landschaftlicher Einfluss auf die Wildbienen-Diversität Flächenanteil Wald

ТШП

Renaturierungseinfluss auf die Wildbienen-Diversität?

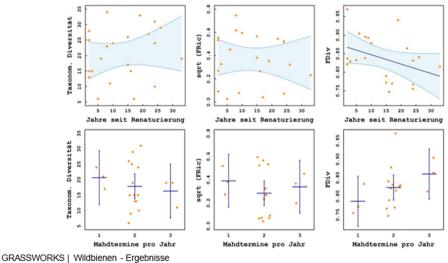


Abb. 33: Renaturierungseinfluss auf die Wildbienen-Diversität?

Fazit: Effekte der Grünlandrenaturierung auf Wildbienen

- Sowohl lokale als auch landschaftliche Faktoren beeinflussen die Wildbienen - Diversität.
- (2) Ein geringer Teil der Wildbienen Diversität kann durch die **Renaturierungsmethode** erklärt werden.
- (3) Die Wildbienen Diversität ist außerdem durch artspezifische ,Traits' beeinflusst. (nicht gezeigt)

GRASSWORKS | Wildbienen - Fazit

32

Abb. 34: Fazit: Effekte der Grünlandrenaturierung auf Wildbienen

Wie geht es weiter?

Noch nicht ausgewertet:

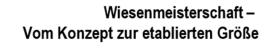
- 1. Weitere Schärfung der Definition von Renaturierungserfolg
- 2. Quantifizierung eines Renaturierungsgradienten (vgl. LUI)
- 3. Schlüsselfaktoren für erfolgreiche Renaturierung der Artenvielfalt im Grünland
- 4. Integration mit Daten aus den sozio-ökonomischen Befunden
- 5. Verbesserung der Wertschätzung von Biodiversität im Grünland
- 6. Informations- und Beratungstools für Landwirte, Verbände und Verwaltung

GRASSWORKS | Ausblick

Abb. 35: Wie geht es weiter?

Abb. 36. Ansprechpartner

WiesenmeisterschaftVom Konzept zur etablierten Größe


Sabine Heinz

Institut für Agrarökologie und biologischen Landbau (LfL)

Dr. Sabine Heinz

Institut für Agrarökologie und biologischen Landbau

Abb. 37: Wiesenmeisterschaft – Vom Konzept zur etablierten Größe

Was ist die Wiesenmeisterschaft?

- Gemeinsamer Wettbewerb von der Bayerischen Landesanstalt für Landwirtschaft (LfL) und dem BUND Naturschutz in Bayern e.V.
- Teilnehmen können **Landwirte**, die den Aufwuchs arten- und blumenreiche Wiesen im landwirtschaftlichen Betrieb verwenden
- Ziele: Leistungen der Landwirte, die artenreiche Wiesen erhalten und in ihrem landwirtschaftlichen Betriebskreislauf nutzen, in der Öffentlichkeit würdigen.
- Wertschätzung für artenreiches Grünland und für die Leistungen der Landwirte
- · Seit 2009 jedes Jahr in einer anderen Region Bayerns

Was ist die Wiesenmeisterschaft?

Ausgezeichnet wird ein gutes Management von artenreichen Wiesen und Weiden: Balance zwischen Artenreichtum und Nutzung

Institut für Agrarökologie und Biologischen Landbau

Abb. 39: Was ist die Wiesenmeisterschaft?

Bewertungskriterien

Die Bewertung: Balance zwischen landwirtschaftlichen und naturschutzfachlichen Kriterien

Naturschutz (15 Punkte maximal):

Artenzahlen (Kräuter und Leguminosen) Rote-Liste-Arten/seltene Arten Gleichmäßigkeit des Bestandes Anteil Extensivgrünland im Betrieb

Landwirtschaft (12 Punkte maximal):

Futterertrag Ertragsanteil unerwünschter Arten Verwertung des Aufwuchses im Betrieb Zukunftsfähige Nutzung

Kulturlandschaftswert (3 Punkte maximal)

Abb. 40: Balance zwischen landwirtschaftlichen und naturschutzfachlichen Kriterien

Bewertungskriterien

Naturschutzkriterien z.B.

Artenzahl:
Anzahl der Kräuter und Leguminosen, geschützte Arten

Institut für Agrarökologie und Biologischen Landbau

Abb. 41: Naturschutzkriterien

Bewertungskriterien

Landwirtschaftliche Kriterien

z.B. Futterertrag Anteil unerwünschter Arten

Abb. 42: Landwirtschaftliche Kriterien

Bewertungskriterien

LfL

Institut für Agrarökologie und Biologischen Landbau

Abb. 43: Landwirtschaft Zukunftsfähige Nutzung

Bewertungskriterien

Kulturlandschaftswert

Abb. 44: Kulturlandschaftswert

Teilnahmebedingungen

Teilnahmebedingungen

- •Landwirtschaftliche Betriebe, konventionell oder Öko
- •im Wettbewerbsgebiet
- •Wiese/Weide artenreich und mindestens 0,5 ha Fläche
- •Aufwuchs wird im landwirtschaftlichen Betrieb genutzt

Die Teilnehmerzahl ist begrenzt, die ersten 30 Anmeldungen werden in jedem Fall berücksichtigt.

Institut für Agrarökologie und Bio

Abb. 45: Teilnahmebedingungen

Wiesenmeisterschaften

Wiesenmeisterschaften seit 2009

- 2009 Bayerischer Wald
- 2010 Oberfränkischer Jura
- 2011 Schwäbisches Hügelland
- 2012 Frankenwald
- 2013 Pfaffenwinkel-Tölzer Land
- 2014 Oberpfälzer Wald und Hügelland
- 2015 Spessart und Odenwald
- 2016 Westliches Mittelfranken
- 2017 München und Miesbach
- 2018 Donau-Isar-Hügelland
- 2019 Evaluierung und Broschüre 10 Jahre Wiesenmeisterschaft
- 2021 Öko-Modellregion Mühldorfer Land
- 2022 Öko-Modellregion Waginger See Rupertiwinkel
- 2023 Öko-Modellregionen Amberg-Sulzbach, Stadt Amberg und Neumarkt in der Oberpfalz

Abb. 46: Wiesenmeisterschaften seit 2009

LfL 2024 Ostallgäu

Wiesenmeisterschaft Wiesenmeisterschaft

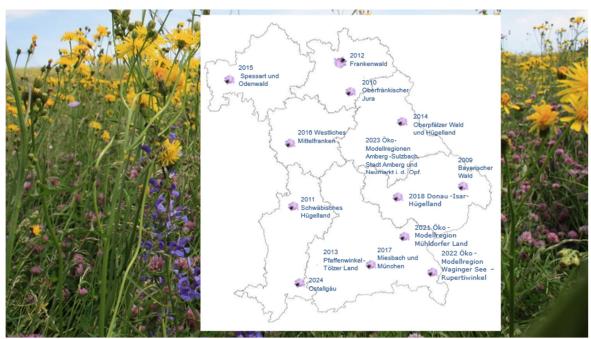


Abb. 47: Karte der Wiesenmeisterschaften seit 2009

Ablauf der Wiesenmeisterschaft

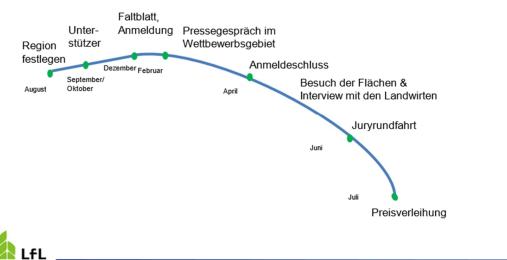


Abb. 48: vom Festlegen der Region bis zur Preisverleihung

Ablauf der Wiesenmeisterschaft

Abb. 49: Ablauf der Wiesenmeisterschaft

Ablauf der Wiesenmeisterschaft

Abb. 50: Besuch aller Wiesen und Landwirte

Ablauf der Wiesenmeisterschaft

Abb. 51: Juryrundgang

Ablauf der Wiesenmeisterschaft

- Preis Aufenthalt im Bio-Hotel 500 €
 Preis Aufenthalt im Bio-Hotel 300 €
 weitere Sachpreise, Urkunde, Artenliste für alle Teilnehmer
- Commence of the commence of th

LfL

Abb. 52: Preisverleihung

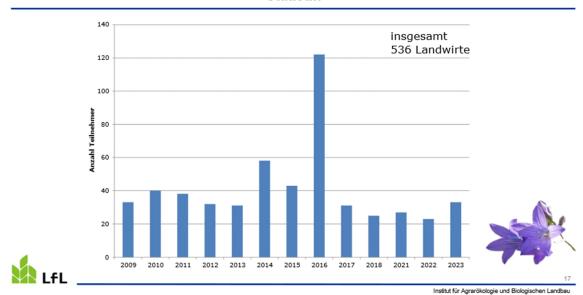


Abb. 53: Statistik Anzahl Landwirte

Statistik

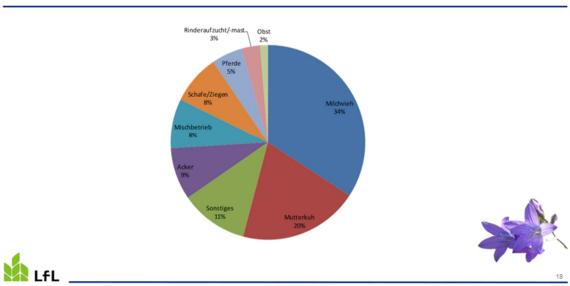


Abb. 54: Statistik der Flächen Nutzung

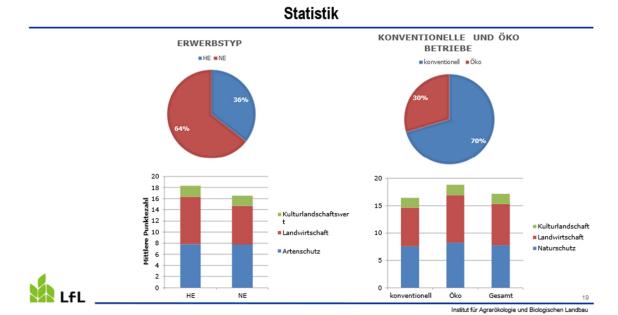


Abb. 55: Statistik Erwerbstyp / Konventionelle und Öko Betriebe

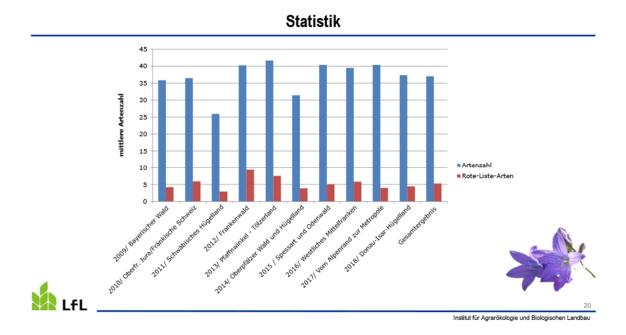
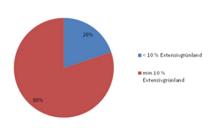
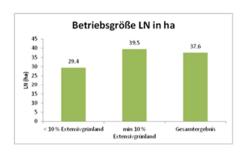
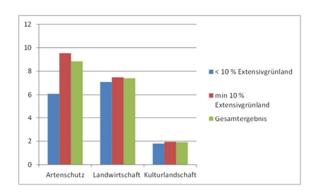




Abb. 56: Statistik Artenzahl / Rote Liste Arten

Abgestufte Nutzung als Erfolgsrezept?

Seit 2015 fragen wir die Teilnehmer nach dem Anteil des extensiv genutztem Grünlandes (insgesamt 222 Betriebe)


80% nutzen in Ihrem Betrieb mindestens 10 % der Grünlandfläche extensiv Im Mittel sind Betriebe die mindestens 10 % des Grünlandes extensiv nutzen größer

Institut für Agrarökologie und Biologischen Landbau

Abb. 57: Abgestufte Nutzung als Erfolgsrezept?

Abgestufte Nutzung als Erfolgsrezept?

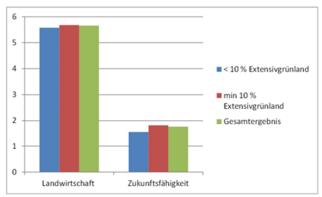

In allen drei Kategorien erzielen Betriebe mit > 10 % Extensivgrünland höhere Punktzahlen

Abb. 58: Abgestufte Nutzung als Erfolgsrezept?

Abgestufte Nutzung als Erfolgsrezept?

Betrachtet man die Kategorien Landwirtschaftliche Nutzung der Fläche und Zukunftsfähigkeit des Betriebes, erzielen Betriebe mit 10 % Extensivgrünland auch bei der Zukunftsfähigkeit alleine höhere Werte

Institut für Agrarökologie und Biologischen L

Abb. 59: Abgestufte Nutzung als Erfolgsrezept

Was bleibt vor Ort?

- · Wertschätzung für die Landwirte
- · Vernetzung der Landwirte
- Vernetzung verschiedener (örtlicher) Akteure aus den Bereichen Naturschutz und Landwirtschaft
- Artenreiches Grünland wird zum Thema bei Landrat, Bürgermeister....

Ganz praktisch: Kontakte zu Landwirten und artenreichen Flächen z.B. für Schulungen des AELF, potentielle Spenderflächen für Mahdgutübertragung

Abb. 60: Was bleibt vor Ort?

Abb. 61: Kontaktdaten

Moorverträgliche Bewirtschaftung durch Feuchtgrünland mittlerer Nutzungsintensität und Saatguteinsatz

Lennart Grosch, Eva Schmidt und Bastian Zwack (LfL)

Moorverträgliche Bewirtschaftung durch Feuchtgrünland mittlerer Nutzungsintensität und Saatguteinsatz

Bastian Zwack und David Weiß
Institut für Agrarökologie und Biologischen Landbau
Institut für Pflanzenbau und Pflanzenzüchtung

Weihenstephaner Grünlandgespräche
18. März 2024

Abb. 62: Moorverträgliche Bewirtschaftung durch Feuchtgrünland mittlerer Nutzungsintensität und Saatguteinsatz

Bericht aus dem Projekt MoorBewi

Projekttitel:

"Entwicklung moorverträglicher Bewirtschaftungsmaßnahmen für landwirtschaftlichen Moor - und Klimaschutz" (**MoorBew**i)

Laufzeit: 01.01.2021 bis 31.12.2024

Leitung:

Koordination:

Dr. Annette Freibauer (LfL-FOK) Dr. Lennart Gosch (LfL-IAB)

Dr. Michael Diepolder (LfL-IAB)

LfL

Abb. 63: Bericht aus dem Projekt MoorBewi

Anlass: Probleme durch die Entwässerung von Moorböden

- Zersetzung des Torfs vor allem durch aerobe Mikroorganismen (O 2-Eintritt)
- Hohe Treibhausgasemissionen von bis zu 42 t CO₂e/ha/a
- Bodensackung von etwa 1 cm/Jahr (0,5–4 cm/Jahr) und Bodendegradierung
- Verlust von Funktionen im Landschaftshaushalt z. B. weniger Rückhalt von Starkniederschlägen
- Endlichkeit der bisherigen Nutzung durch zunehmende Nähe zum Grundwasser
- [...]

-

Abb. 64: Anlass: Probleme durch die Entwässerung von Moorböden

Interdisziplinäre Herangehensweise

Projektziel:

Überwindung wesentlicher Hemmnisse für eine moorverträgliche Bewirtschaftung

5 Projektpartner mit insgesamt 16 Projektbearbeiter/innen

6 Arbeitspakete:

Gesamt-Wasser-Feucht-Paludi-Förder-Wissenskulturen koordination management grünland transfer programm

Abb. 65: Interdisziplinäre Herangehensweise

Landwirtschaftliche Nutzung auf Moorböden in Bayern

Im Jahr 2022 gemeldete Nutzung (InVeKoS) von Flächen in der Moorbodenkulisse Nicht-InVeKoS-Flächen

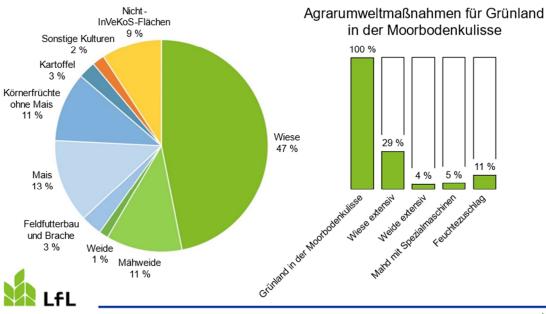


Abb. 66: Landwirtschaftliche Nutzung auf Moorböden in Bayern

Feuchtgrünland zur Futterproduktion

- Unterstützung, vor allem für rinderhaltende Betriebe, bei der Nutzungsumstellung
- Bewirtschaftung auf einem mittelintensiven Nutzungsniveau (3–4 Schnitte im Jahr) bei einem gleichzeitig über möglichst lange Zeiträume hohen Grundwasserstand

Abb. 67: Feuchtgrünland zur Futterproduktion

Saatguteinsatz zur Vorbereitung auf die Wasserstandsanhebung

- Lassen sich mit nässetoleranten Gräsern futterbaulich nutzbare Bestände etablieren?
- Wie wirkt sich die Wasserstandsanhebung auf die Arten zusammensetzung und Tragfähigkeit der Grasnarbe aus?
- Für welche Verwertungszwecke eignen sich Aufwüchse mit nässetoleranten Futtergräsern anhand ihrer Inhaltsstoffe?

Neuansaat mit sechs unterschiedlichen Saatgutmischungen

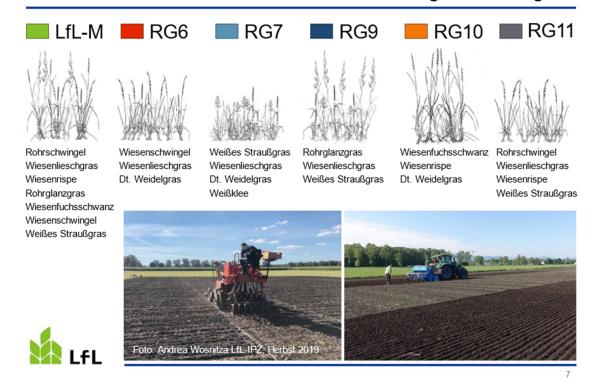


Abb. 69: Neuansaat mit sechs unterschiedlichen Saatgutmischungen

Wasserstandsanhebung durch den Anstau von Rohrdränagen

Abb. 70: Wasserstandsanhebung durch den Anstau von Rohrdränagen

Auswirkungen der Wasserstandsanhebung

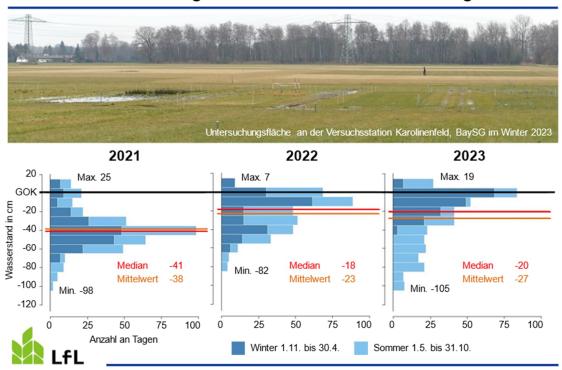
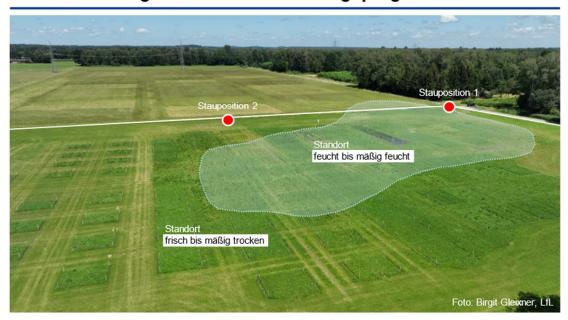



Abb. 71: Auswirkungen der Wasserstandsanhebung

Untersuchungsfläche mit einem ausgeprägten Geländerelief

10

Abb. 72: Untersuchungsfläche mit einem ausgeprägten Geländerelief

Gruppierung der Versuchsparzellen in zwei Wasserstufen

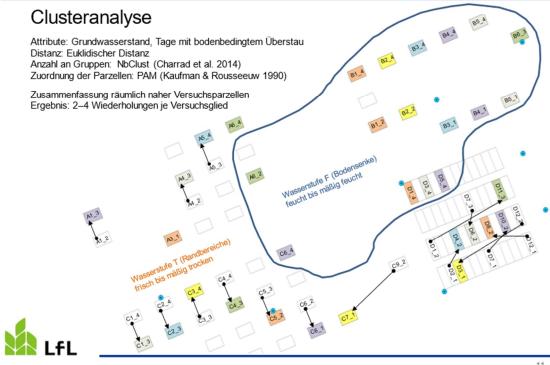


Abb. 73: Gruppierung der Versuchsparzellen in zwei Wasserstufen

Ertragsanteile und Düngung

- Schätzung der Ertragsanteile vor dem ersten Schnitt auf 24 m² nach Klapp, E. & Stählin, A. 1936
- Mineralische Düngung nach dem ersten Schnitt in Anlehnung an die Nährstoffgehalte von 25 m³ Rindergülle (in kg/ha 40 N, 35 P₂O₅, 100 K₂O, 15 MgO, 12,5 S)

12

Ernte und Probenverarbeitung

- Kernbeerntung 1,6 m x 6 m mit Doppelmessermähbalken, Heurechen und Plane
- Inhaltsstoffe der Proben (NIRS -Weender, Mineralstoffe RFA) im Labor für Futtermittelqualität der LfL in Grub
- TM-Bestimmung nach Vortrocknung (Heubelüftung) und Trockenschrank (105 °C)

13

Abb. 75: Ernte und Probenverarbeitung

Statistische Auswertung

- Varianzanalysen mit SAS Studio 9.4 (SAS Institute Inc., Cary NC, USA) anhand Gemischter Modelle (GLMM)
- Signifikanzniveau α < 0,05
- Zweifaktorielle Auswertung mit Bestandstyp und Wasserstufe
- Zur Validierung: Einfaktorielle Auswertung mit Bestandstyp und Grundwasserstand in cm
- Jahr als fester (2021 –2023) oder zufälliger (2022, 2023) Effekt
- Messwiederholungen im selben Versuchsglied mit der entsprechenden Kovarianzstruktur abgebildet
- Überprüfung der Datenvorraussetzungen mit Residuendiagrammen
- Paarweise Vergleiche anhand Tukey -Test

Ergebnisse

15

Abb. 77: Ergebnisse

Auswirkung der Wasserstandanhebung auf die Bestände

- Nach der Wasserstandsanhebung veränderten sich die Pflanzenbestände in feuchten Bereichen teilweise deutlich.
- Aufgrund der extremen Standortbedingungen wurde i. d. R. die am besten angepasste Pflanzenart dominant.
- Bestände mit einem hohen Anteil an nicht nässetoleranten Futtergräsern wurden rasch von Konfliktpflanzen besiedelt.
- Rohrglanzgras, Wiesenfuchsschwanz und Rohrschwingel blieben auch unter feuchten Bedingungen konkurrenzkräftig.
- Rohrglanzgras und Wiesenfuchsschwanz erhöhten die Tragfähigkeit der Grasnarbe.
- Wiesenfuchsschwanz war als alleiniges Leitgras anfällig gegenüber Lager.

16

Bestandsdynamik nach der Wasserstandsanhebung

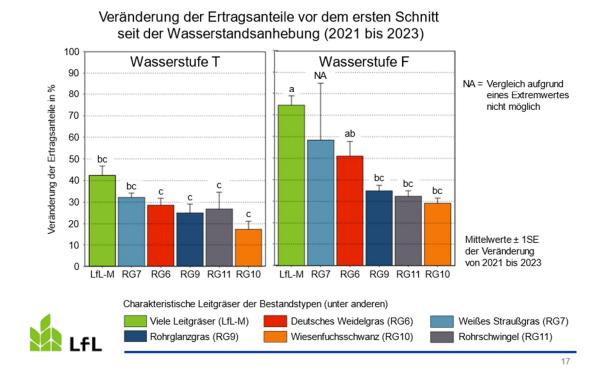


Abb. 79: Bestandsdynamik nach der Wasserstandsanhebung

Bestände tendieren in feuchten Bereichen zu einer Leitart

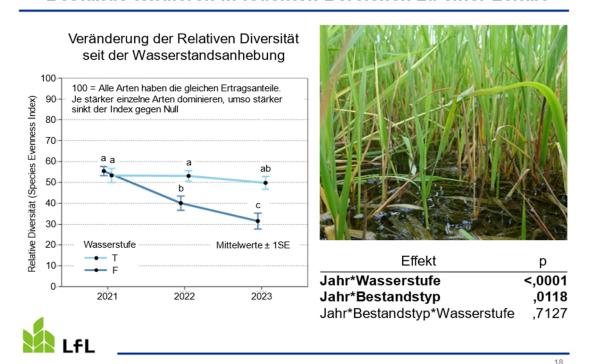


Abb. 80: Bestände tendieren in feuchten Bereichen zu einer Leitart

Ein Gras gewinnt immer: Rohrglanzgras

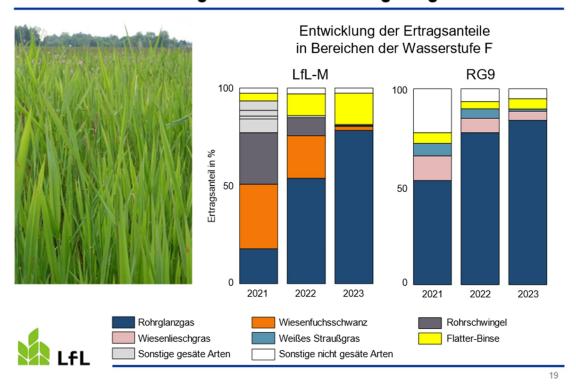


Abb. 81: Ein Gras gewinnt immer: Rohrglanzgras

Wiesenfuchsschwanz und Rohrschwingel bleiben robust

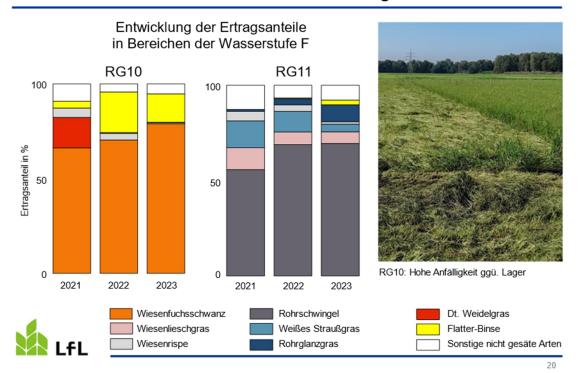


Abb. 82: Wiesenfuchsschwanz und Rohrschwingel bleiben robust

Konfliktpflanzen ersetzen nicht nässeangepasste Bestände

Bestände mit nicht nässetoleranten Arten fallen aus. Der offene Boden wird rasch durch Pflanzenarten aus der Bodensamenbank besiedelt.

Abb. 83: Konfliktpflanzen ersetzen nicht nässeangepasste Bestände

Einfluss des Pflanzenbestandes auf die Scherfestigkeit

Scherfestigkeit in kPa = Indikator für Tragfähigkeit der Grasnarbe auf Niedermoorstandorten (Tölle et al. 2000)

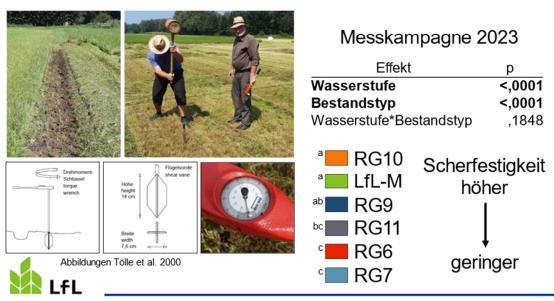


Abb. 84: Einfluss des Pflanzenbestandes auf die Scherfestigkeit

21

Einfluss nässetoleranter Gräser auf die Scherfestigkeit

Scherfestigkeit in Abhängigkeit des Ertragsanteils nässetoleranter Leitgräser im Jahr 2023 (Versuchsglieder mit >5 % Ertragsanteil der jeweiligen Art)

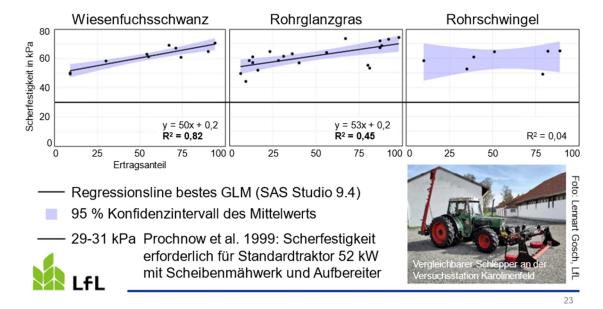


Abb. 85: Einfluss nässetoleranter Gräser auf die Scherfestigkeit

Hauptanteil des Jahresertrages im Sommer

Wasserstufe F	Schnitt	LfL-M	RG6	RG7	RG9	RG10	RG11
2022 und 2023 MW ± 1SE	Σ	98 ± 3	88 ± 3	85 ± 10	95 ± 4	82 ± 13	77 ± 3
	1	33±3	27 ± 3	27 ± 5	26 ± 3	24 ± 5	23 ± 3
Ertrag dt TM/ha	2	45 ± 7	42 ± 3	43 ± 2	50 ± 3	37 ± 5	39 ± 5
dt IIVI/IIa	3	21 ± 5	19 ± 2	16 ± 5	19 ± 3	20 ± 5	15 ± 1
		niedriger					höher

- Bestände mit einem hohen Anteil an Rohrglanzgras (LfL -M, RG9) liefern die tendenziell höchsten Erträge.
- Der Rohrschwingel (RG11) bleibt niedrigwüchsig aber blattreich.

Strukturergänzung für Grassilagen

Bei drei Schnitten im Jahr erzeugen die obergrasreichen Bestände Aufwüchse mit geringen Energie -, Eiweiß- und Kaliumgehalten.

Wasserstufe F 2022 und 2023 MW ± 1SE	Schnitt	LfL-M	RG6	RG7	RG9	RG10	RG11	
Energiedichte	1	4.9 ± ,1	$5,1\pm,1$	5.4 ± ,3	5,0 ± ,1	$4.7 \pm .1$	5,6 ± ,1	
MJ NEL in g/kg TM	2	4.8 ± ,1	$5,0\pm,1$	4.9 ± ,2	4,8 ± ,1	$4.8 \pm .2$	5,3 ± ,1	
GD Tukey 5 % = 0,6	3	5.8 ± ,1	$5,6\pm,1$	5.5 ± ,2	5,8 ± ,1	$5.2 \pm .01$	5,9 ± ,1	
Rohprotein	1	80 ± 6	97±6	85±6	84±3	80 ± 5	74±5	
g/kg TM	2	81 ± 10	121±6	101±11	81±6	106 ± 18	86±5	
GD Tukey 5 % = 27	3	120 ± 11	134±6	129±7	121±5	111 ± 6	87±5	
Kalium	1	18 ± ,3	16 ± ,5	15 ± 1,3	18 ± ,4	17 ± ,5	16 ± ,5	
g/kg TM	2	16 ± 1,2	18 ± 1,0	16 ± 1,1	14 ± ,8	19 ± 1,2	18 ± 1,2	
GD Tukey 5 % = 3	3	17 ± ,9	16 ± ,7	15 ± ,8	15 ± ,6	19 ± ,7	14 ± ,5	
(niedriger he Leitgräser (vnen (unter ar	rderen)		höher	
LfL	Viele Lei	itgräser (LfL-M nzgras (RG9)) De	eutsches Weid iesenfuchssch	elgras (RG6)		ßes Straußgra rschwingel (R0	. ,

Abb. 87: Strukturergänzung für Grassilagen

Fazit Feuchtgrünland mittlerer Nutzungsintensität

- Moorflächen können mit nässetoleranten Futtergräsern auf die Wasserstandsanhebung vorbereitet werden.
- Für diesen Zweck wurden die Bayerischen Qualitätssaatgut mischungen kürzlich um BQSM ®-W 1M erweitert.
- Bei drei Schnitten im Jahr lassen sich die Aufwüchse feuchter Standorte als Strukturergänzung bei der Milchkuhfütterung oder als Futter für Jungvieh, Trockensteher, Pferde oder Schafe verwerten.
- Randlich von der Wasserstandsanhebung betroffene Bereiche erzeugen bei kurzen Schnittintervallen im Sommer Aufwüchse mit hohen Eiweißgehalten.
- Auf grundwassernahen Standorten ist auf die Futterhygiene und das Vorkommen giftiger Pflanzen besonders zu achten.

LfL

Hohe Eiweißgehalte durch Stickstoffnachlieferung im Sommer



Abb. 89: Fazit Feuchtgrünland mittlerer Nutzungsintensität

Saatgutmischung für grundwassernahe Moorstandorte

Bayerische Qualitätssaatgutmischungen für das Grünland

Die "Bayerischen Qualitätssaatgutmischungen" mit dem Qualitätssiegel sind vom Institut für Pflanzenbau und Pflanzenzüchtung (IPZ) der Bayerischen Landesanstalt für Landwirtschaft (LfL) unter bayerischen Verhältnissen getestet und abgestimmtauf: Standorte, Klima, Ausdauer, Winterfestigkeit und Gesundheit.

Qualität und Sicherheit sind gewährleistet. Damit sie optimal genutzt werden können, müssen sie standortbezogen ausgewählt werden.

Die folgende Tabelle unterstützt Sie bei der Wahl Ihrer speziellen Grünlandmischung.

434			Nutzungsintensität	=		(a		n hoher Nutzung			n		
22			Saatgutverwendung				Neua	nsaat				Nach	saat
00			Nutzungsart				V	Viese <u>un</u>	d Weid	e			
land/			Mischung	BQS		BQS W 1		BQS W 16		BQS W 1		BQS W-	
E -				kg/ha	%	kg/ha	%	kg/ha	%	kg/ha	%	kg/ha	%
pz/gru	pue	Legumi- nosen	Weißklee Rotklee Hornschotenklee	2,0	5,6	2,0	5,6	2,0	5,6			2,0	8,3
www.lfl.bayern.de/ipz/gruenland/022434	Grünland	Gräser	Deutsches Weidelgras ¹⁾ Wiesenrispe Knaulgras ²⁾ Wiesenlieschgras Wiesenschwingel Glatthafer Goldhafer Rohrschwingel Rotschwingel	23,0 3,0 2,0 6,0	63,9 8,3 5,5 16,7	9,0 4,0 3,0 7,5	25,0 11,1 8,3 20,8 29,2	23,0 3,0 8,0	63,9 8,3 22,2	4,5 7,5 3,0 1,5	15,0 25,0 10,0 5,0	22,0	91,7
			Saatstärke	36,0	100,0	36,0	100,0	36,0	100,0	30,0	100,0	24,0	100,0

4 Nachhaltige Almwirtschaft im Klimawandel

Martina Hofmann, Bernd Panassiti (HSWT)

Nachhaltige Almwirtschaft im Klimawandel

Einfluss des Zeitpunkts des Weideauftriebs auf Pflanzen- und Insektengesellschaften sowie die Produktivität von Almen im Berchtesgadener Land

Martina Hofmann und Bernd Panassiti

Weihenstephaner Grünland-Gespräche 2024, 18.03.2024

Abb. 91: Nachhaltige Almwirtschaft im Klimawandel

Hintergrund

- Der voranschreitende Klimawandel führt zu einer verlängerten Vegetationsperiode mit früherem Wachstumsbeginn und erhöhter Produktivität von Almen.
- Um die agronomische Qualität zu erhalten ist ein angepasstes Weidemanagement nötig.
- Geändertes Weidemanagement kann sowohl die Pflanzen und Insektengemeinschaften beeinflussen als auch die Produktivität der Almen

Weihenstephaner Grünlandgespräche 2024 | 18.03.2023 | Almweiden



Abb. 93: Phänologische Uhr

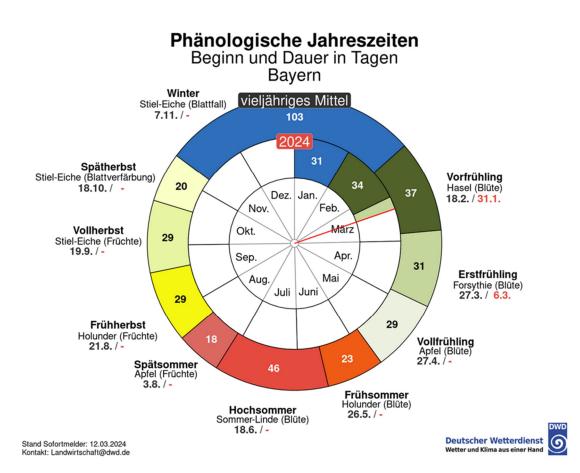


Abb. 94: Phänologische Jahreszeiten

Abb. 95: Aktuelle Weidewirtschaft oft als "ungelenke Freiweide"

Abb. 96: Zusammenspiel der drei Managementfaktoren

Hintergrund

- Der voranschreitende Klimawandel führt zu einer verlängerten Vegetationsperiode mit früherem Wachstumsbeginn und erhöhter Produktivität von Almen.
- Um die agronomische Qualität zu erhalten ist ein angepasstes Weidemanagement nötig.
- Geändertes Weidemanagement kann sowohl die Pflanzen und Insektengemeinschaften beeinflussen als auch die Produktivität der Almen

Projektziele

- Erkenntnisse erlangen, wie sich der Zeitpunkt des Weideauftriebs auf die Produktivität und Futterqualität, sowie Insekten- und Pflanzengemeinschaften auswirken
- Empfehlungen aussprechen, wie Weideregime optimiert werden kann

Weihenstephaner Grünlandgespräche 2024 | 18.03.2023 | Almweiden

Abb. 97: Projektziele

Methodik

 Acht Almen im Berchtesgadener Land wurden 2021 und 2022 untersucht

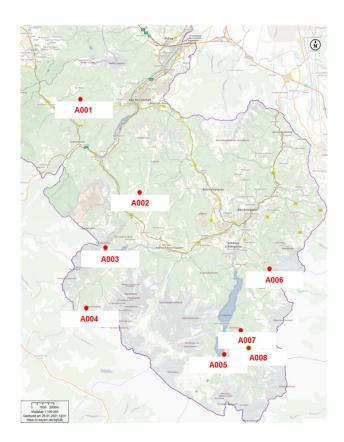


Abb. 98: Methodik

Merkmale der untersuchten acht Almen

Alm	Höhenlage (m ü. NN)	Exposition	Tiefgründigkeit (in cm)	Vegetation#
A001	780 - 840	SO	17,5	$Rotschwingel-Straußgrasweide/Subalpine\ Milchkrautweide$
A002	1.400 – 1.500	W	35,9	Alpenlattich-Borstgrasmatte
A003	1.100-1.340	so	13,4	Blaugras-Horstseggenhalde
A004	1.320-1.380	N	11,3	Rostseggenhalde
A005	600 – 700	N	6,8	Rotschwingel-Straußgrasweide
A006	1.300 – 1.540	SW	27,0	Goldpippau-Kammgrasweide
A007	1.620-1.740	S	18,4	Alpenlattich-Borstgrasmatte
A008	1.440 – 1.580	SW	38,4	Alpenlattich-Borstgrasmatte

Pflanzensoziologische Zuordnung nach Mucina, Grabherr und Ellmauer (1993)

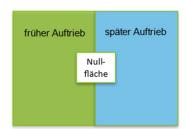

Weihenstephaner Grünlandgespräche 2024 | 18.03.2023 | Almweiden

Abb. 99: Merkmale der untersuchten acht Almen

Methodik

- Die Beweidung wurde in Koppeln mit frühem und spätem Auftrieb unterteilt (Umtriebsweide-System).
- Der frühe Weideauftrieb orientiert sich am jahresaktuellen Vegetationsaufwuchs, der späte Auftrieb am forstrechtlichen Auftriebsdatum (Berechtigungsalmen).

<u>Versuchsfrage:</u> gibt es Unterschiede zwischen frühem und spätem ersten Weideauftrieb?

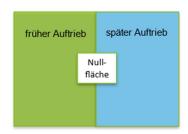

Weihenstephaner Grünlandgespräche 2024 | 18.03.2023 | Almweiden

Abb. 100: Methodik

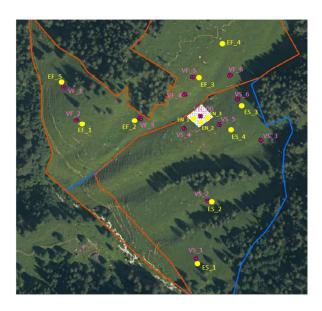
Methodik

- Die Beweidung wurde in Koppeln mit frühem und spätem Auftrieb unterteilt (Umtriebsweide-System).
- Der frühe Weideauftrieb orientiert sich am jahresaktuellen Vegetationsaufwuchs, der späte Auftrieb am forstrechtlichen Auftriebsdatum (Berechtigungsalmen).

<u>Versuchsfrage:</u> gibt es Unterschiede zwischen frühem und spätem ersten Weideauftrieb?

Weihenstephaner Grünlandgespräche 2024 | 18.03.2023 | Almweiden

Abb. 101: Methodik Versuchsaufbau


Erfasste Zielgrößen

- Pflanzenarten, Deckung, Ertragsanteile, Phänologie (9 m²-Vegetationsplots, 5fach wiederholt je Weidefläche)
- Ertrag und Futterqualität (in 1 m²-Ertragplots, 5fach wiederholt je Weidefläche Auszäunung)
- Insektenvorkommen
 - > parallel zum 1. Auftrieb der Tiere auf die Weidefläche wurde in Ertragsplots Biomasse beerntet, erneute Beerntung zu zweitem Weideumtrieb und zu Ende der Vegetationsperiode
 - > Futterqualität aus Teilprobe jedes Ertragsschnittes (Energiedichte, Rohproteingehalt, ADF, Asche u.a.)
 - > während der Weideperiode "pluck-sampling" (oberes Drittel der Weideaufwuchses) für Futterqualität
 - > regelmäßige Narbenhöhenmessung mit pasturemeter (Doppelbeprobung für Regression Narbenhöhe Biomasse)

Abb. 102: Erfasste Zielgrößen

Methodik

Lage der Vegetations- (V) und Ertrags(E)-plots

VF = **V**egetationsplot - **f**rüher Auftrieb VS = **V**egetationsplot - **s**päter Auftrieb

VN = **V**egetationsplot – **N**ullfläche

EF = **E**rtragsplot - **f**rüher Auftrieb ES = **E**rtragsplot – **s**päter Auftrieb

EN = Ertragsplot - Nullfläche

Abb. 103: Lage der Vegetations- (V) und Ertrags(E)-plots

Weidefläche mit Auszäunung Ertragsplots und Insektenfalle

Abb. 104: Weidefläche mit Auszäunung Ertragsplots und Insektenfalle

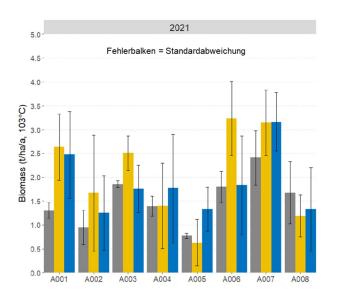
Ertragsplots

Abb. 105: Ertragsplots

Vegetationsplots

Abb. 106: Vegetationsplots

Daten des Weideauftriebes im Jahr 2021 und 2022


	site_id	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41
	A001	07.05.	17.05.	22.05.		02.06.				01.07.		15.07	21.07.	28.07.		16.08.		26.08.					04.10.	12.10.
	A002							19.06.					24.07.					30.08.			18.09.	25.09.		
	A003			21.05.				18.06.				16.07.											02.10.	
21	A004								26.06.			19.07.				19.08.			03.09.					
2021	A005			21.05.				20.06.			11.07.			01.08.				30.08.						09.10.
	A006						14.06.		28.06.	06.07.								30.08.			20.09.			
	A007							19.06.		03.07.	11.07.							29.08.		11.09.				
	A008						12.06.	24.06.		02.07.											18.09.			

	A001	- exclu	ided from	n exper	iment -														
	A002						15.06.				09.07.				15.8.	16.09.			
	A003			21.05.				17.06.			15.07.							01.10.	
22	A004								25.06.		15.07.			09.08.		09.09.			
20	A005		14.05.				13.06.			10.07.		12.08.			08.09.	17.09.		02.10.	
	A006				03.06.		15.06.		01.07.					24.08.		01.10.			
	A007				29.05.		19.06.		07.07.				03.09.		11.09.				
	A008					04.06.		23.06.		02.07.							14.09.		

Abb. 107: Daten des Weideauftriebes im Jahr 2021 und 2022

Gesamtjahres-TM-Ertrag 2021

- Früher und später Weideauftrieb haben signifikant höheren Ertrag als die Nullvariante (einmaliger Schnitt am Vegetationsende)
- ➤ Für die Erhaltung der Produktivität ist eine mehrmalige Entblätterung notwendig

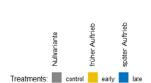
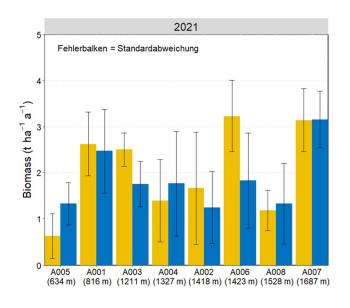
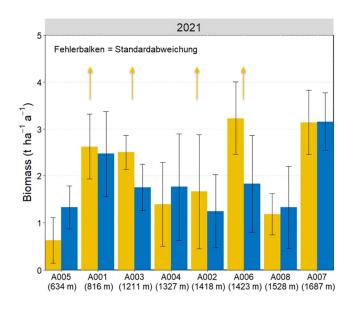



Abb. 108: Gesamtjahres-TM-Ertrag 2021

Gesamtjahres-TM-Ertrag 2021 sortiert nach Höhenlage



- * Kein eindeutiger Effekt der Höhenlage der Alm
- Exposition, Bodentiefe, Pflanzenbestand sind offenbar bedeutsamer als die Höhenlage für den Jahresertrag

Abb. 109: Gesamtjahres-TM-Ertrag 2021 sortiert nach Höhenlage

Gesamtjahres-TM-Ertrag 2021 sortiert nach Höhenlage

- Jahresertrag zwischen 500 und 3.200 kg TM/ha
- große Variation der fünf Ertragsplots spiegelt hohe Heterogenität der Weideflächen wider
- vier Almen mit tendenziell höherem Ertrag bei frühem Weideauftrieb verglichen mit spätem Weideauftrieb, eine Alm mit ähnlichem Ertrag und drei Almen mit tendenziell höherem Ertrag bei spätem Weideauftrieb verglichen mit frühem Weideauftrieb

Abb. 110: Gesamtjahres-TM-Ertrag 2021 sortiert nach Höhenlage 2

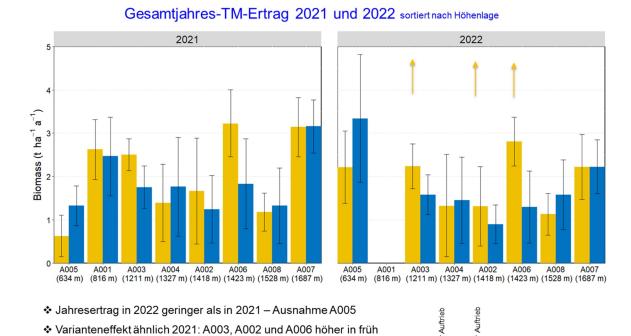


Abb. 111: Gesamtjahres-TM-Ertrag 2021 und 2022 sortiert nach Höhenlage

early

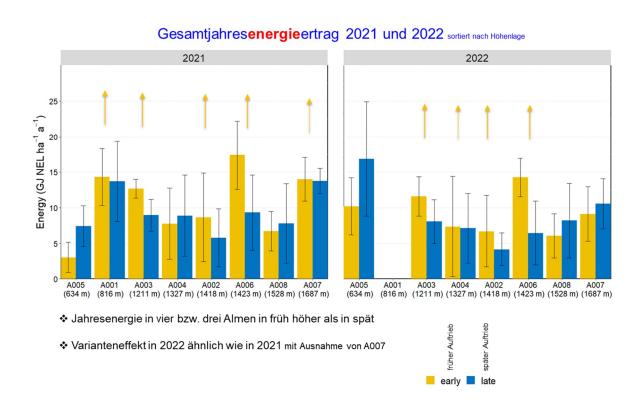


Abb. 112: Gesamtjahres**energie**ertrag 2021 und 2022 sortiert nach Höhenlage

Gesamtjahresenergieertrag 2021 und 2022 sortiert nach Höhenlage

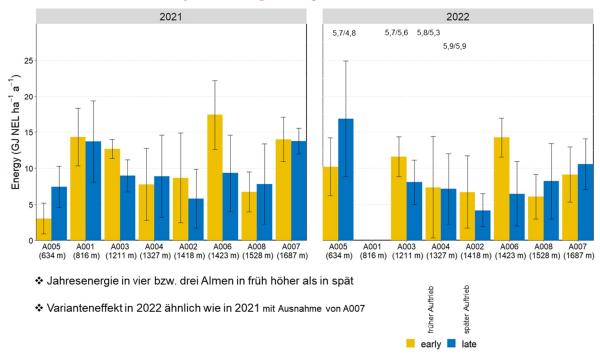


Abb. 113: Gesamtjahres**energie**ertrag 2021 und 2022 sortiert nach Höhenlage 2

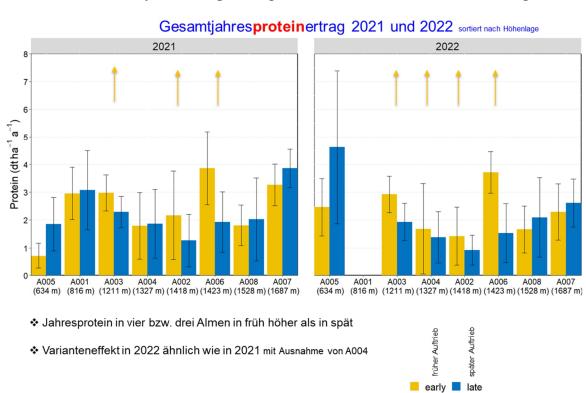
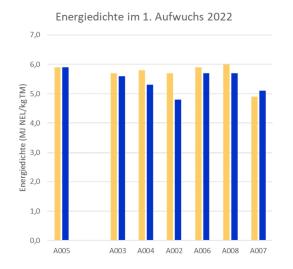
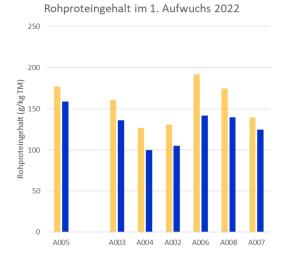




Abb. 114: Gesamtjahres**protein**ertrag 2021 und 2022 sortiert nach Höhenlage

- s Energiedichte meistens und Rohproteingehalt immer höher bei frühem verglichen mit spätem Auftrieb
- > Bessere Futterqualität bedingt bessere Futterakzeptanz und Futteraufnahme

Abb. 115: Energiedichte und Rohproteingehalt im 1. Aufwuchs 2022

Trockenmasse- und Energie-Ertrag in 2021

Legende: A001 = Alm Nr.1; TM = Trockenmasse-Ertrag; früh = früher Auftrieb; NEL = Netto-Energie-Laktation

Ausgehend von bisher einjährigen Daten kann festgehalten werden, dass ein früher Auftrieb bezogen auf agronomische Aspekte von Vorteil ist gegenüber einem späteren Auftrieb.

Besonders die höhere
Energiedichte im Futter bedingt
eine größere Futterakzeptanz der
Weidetiere. Damit die im Fortgang
des Klimawandels vermutlich weiter
zunehmende und frühere
Biomasse-Bildung auf Almweiden
optimal genutzt wird, ist ein früherer
Weideauftrieb unbedingt zu
verbinden mit einer gelenkten
Weideführung im
Koppelumtriebssystem und
erhöhten Tierzahlen.

Abb. 116: Trockenmasse- und Energie-Ertrag in 2021

Gesamtjahresertrag 2021 und 2022

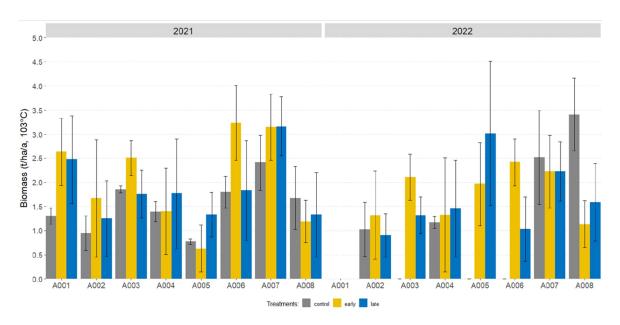


Abb. 117: Gesamtjahresertrag 2021 und 2022

Typische und weit verbreitet Fettweiden der Almen

	Goldpippau- Kammgrasweide und Rotschwingel- Straußgrasweide	Milchkrautweide	Rasenschmiele- Weiderasen	
Kennarten	Wiesen-Kammgras Rotschwingel Rotes Straußgras Gold-Pippau Weißklee Rotklee Wiesen-Löwenzahn	Alpen-Rispengras Alpen-Lieschgras Wiesen-Löwenzahn Gold-Pippau Bergwiesen- Frauenmantel	Rasenschmiele	
	Ertrag und F	utterqualität		
Biomasse-Ertrag [dt TM/ha]	20 bis 50	20 bis 30	10 bis 25	
Energiedichte im Futter [MJ NEL/kg TM]	5 bis 6	5 bis 6	4,5 bis 5	
Energie-Ertrag [MJ NEL/ha]	10.000 bis 30.000	10.000 bis 18.000	4.500 bis 12.500	

Ertragsmenge und Futterqualität des Aufwuchses spiegelt sich in den Gewichtszunahmen bzw. der Laktation der Weidetiere wider.

Bei idealer Nutzung werden die Fettweiden im Frühsommer, sobald das Gras eine Höhe von 10 bis 15 cm erreicht hat, abgeweidet. Danach 5 – 7 wöchige Ruhepause zum Nachwachsen.

Abb. 118: Typische und weit verbreitet Fettweiden der Almen

	Goldpippau-Kammgrasweide und Rotschwingel- Straußgrasweide	Rasenschmiele-Weiderasen			
	Ökologie	und almwirtschaftliche Be	edeutung		
Ökologie	Die Bestände kommen meist auf sonnigen, ebenen bis schwach geneigten Standorten vor. Typische sind sie für tiefer liegende Almbereiche.	Die Milchkrautweide kommt meist in geschützten Lagen und von Natur aus auf nährstoffreichen Standorten, wie am Fuß von Hängen oder in Mulden, vor.	Die Rasenschmiele-Weiderasen gedeihen auf nährstoffreichen, schweren Böden. Sie entwickeln sich meist aus Fettweiden bei fehlender Weidepflege. Ihre Vermehrung wird durch Trittschäden und stauende Nässe gefördert.		
Höhenstufe	obermontane bis submontane Stufe	subalpine und unteralpine Stufe	montane bis submontane Stufe		
Wasserhaushalt	frisch bis wechselfeucht	frisch bis wechselfeucht	wechselfeucht bis nass		
Nährstoffhaushalt/Basen-gehalt	nährstoffreich, basenarm bis basenreich	nährstoffreich, basenreich	nährstoffreich, basenarm bis basenarm		
Boden	mittel- bis tiefgründig	mittel- bis tiefgründig	tiefgründig		
Almwirtschaftliche Bedeutung	Intensive Nutzung als Almweide; gute Weideflächen mit reichem Ertrag und guter Futterqualität. Die Bestände können durch regelmäßige Beweidung und Düngung aus Magerweiden umgewandelt werden.	Fettweide mit guter Futterqualität; aus almwirtschaftlicher Sicht die wertvollste Pflanzengesellschaft in der subalpinen Stufe; sehr kräuterreich; entsteht durch regelmäßige Beweidung und Aufdüngung aus Magerweiden.	Ertragreiche Fettweide mit schlechter Futterqualität; die Rasenschmiele wird nur in sehr jungem Zustand vom Vieh gefressen. Die Standorte eignen sich meist gut zur Bestandsumwandlung in ertragreiche Fettweiden, sofern die Rasenschmiele zurückgedrängt werden kann.		

Quelle: Aigner et al. 2003

Abb. 119: Ökologie und almwirtschafliche Bedeutung

Typische und	weit verbreitet N Bürstlingrasen	lagerweiden de Blaugras- Horstseggenrasen	r Almen Krummseggenrasen
Kennarten	Borstgras Arnika Berg-Nelkenwurz Ferkelkraut	Kalk-Blaugras Horstsegge Alpen-Wundklee Kalk-Glocken-Enzian	Krummsegge Kopfgras Zwerg-Primel Zwerg-Seifenkraut
	Ertrag und F	utterqualität	
Biomasse-Ertrag [dt TM/ha]	5 bis 20	2,5 bis 15	1 bis 7
Energiedichte im Futter [MJ NEL/kg TM]	3,5 bis 4,5	4,0 bis 4,5	3,5 bis 4,5
Energie-Ertrag [MJ NEL/ha]	1.500 bis 10.000	1.000 bis 7.000	350 bis 3.000

Quelle: Aigner et al. 2003

Auf Magerweiden fallen die Nährstoffe nur punktuell durch abgesetzte Exkremente an. Die typischen Pflanzen der Magerweiden haben geringe Ansprüche an die Wasser- und Nährstoffversorgung, sind aber großteils von geringem Futterwert. Es können jedoch auch in Magerweiden wertvolle Futterpflanzen vorkommen. Die Magerweiden sind jedoch von hoher almwirtschaftlicher Bedeutung, weil sie überwiegenden Anteil der Almweiden ausmachen.

Die größten Probleme bei Magerweiden sind die Verwaldung, die Verheidung und die Verbuschung (Nutzungsauflassung – Wiederbewaldung)

Abb. 120: Typische und weit verbreitet Magerweiden der Almen

	Bürstlingrasen	Blaugras-Horstseggenrasen	Krummseggenrasen						
	Ökologie und almwirtschaftliche Bedeutung								
Ökologie	Die Bürstlingsweiden gedeihen auf basenarmen Böden. Sie sind die häufigsten Magerweiden in der subalpinen Region über Silikat.	Der Blaugras-Horstseggenrasen ist eine typische Magerweide über Kalk. Besonders auffallend ist die hohe Anzahl an farbenprächtigen Bergblumen.	Die Krummseggenrasen sind die typischen Rasen der alpinen Kältesteppe auf Silikat. Dort bilden sie ausgedehnte Rasen.						
Höhenstufe	montane bis unteralpine Stufe	subalpine bis unteralpine Stufe	Mittlere bis obere alpine Stufe						
Wasserhaushalt	mäßig frisch bis frisch	frisch bis mäßig trocken	frisch bis staufeucht						
Nährstoffhaushalt/Basengehalt	nährstoffarm, basenarm	nährstoffarm, basenreich	nährstoffarm, basenarm						
Boden	mittel- bis tiefgründig	flachgründig	mittel- bis tiefgründig						
Almwirtschaftliche Bedeutung	Der Großteil der Almweideflächen sind Bürstlingrasen; ihre Futterqualität ist nur mäßig; die Futteraufnahme und Akzeptanz ist nur im Schoßstadium mäßig gegeben, im älteren Stadium erfolgt kaum mehr eine Nutzung; Bürstlingrasen neigen zur Verheidung. Durch sachgemäße Düngung, zum Beispiel mit kompostiertem Stallmist, und entsprechende Nutzung können die Bestände verbessert werden	Der Blaugras-Horstseggenrasen neigt kaum zur Verheidung und zur Verunkrautung. Durch sachgemäße Düngung können die Bestände etwas verbessert werden.	Extensive Nutzung als Almweiden; die Futterqualität ist schlecht. Die Bestände sind nicht verbesserungswürdig.						

Abb. 121: Ökologie und almwirtschafliche Bedeutung 2

Quelle: Wuttej 2010

Abb. 122: Bürstlingsrasen

4.1 Nachhaltige Almwirtschaft im Klimawandel

Bernd Panassiti und Martina Hofmann

Nachhaltige Almwirtschaft im Klimawandel

Einfluss des Zeitpunkts des Weideauftriebs auf Pflanzen- und Insektengesellschaften sowie die Produktivität von Almen im Berchtesgadener Land

Bernd Panassiti und Martina Hofmann

Weihenstephaner Grünland-Gespräche 2024, 18.03.2024

Abb. 123: Titelbild

Hintergrund

- Der voranschreitende Klimawandel führt zu einer verlängerten Vegetationsperiode mit früherem Wachstumsbeginn und erhöhter Produktivität von Almen
- Um die agronomische Qualität zu erhalten ist ein angepasstes Weidemanagement nötig
- Geändertes Weidemanagement kann sowohl die Pflanzenund Insektengemeinschaften beeinflussen als auch die Produktivität der Almen

Abb. 124: Hintergrund Nachhaltiger Almwirtschaft

Projektziele

- 1) Erkenntnisse erlangen, wie sich der Zeitpunkt des Weideauftriebs auf die Produktivität und Futterqualität, sowie Insekten- und Pflanzengemeinschaften auswirken
- 2) Empfehlungen aussprechen, wie Weideregime optimiert werden kann

Abb. 125: Projektziele

Untersuchungsgebiet

8 Almen

- 6 im NP Berchtesgaden
- 2 außerhalb

Unterschungsvarianten

- Früher Auftrieb (early)
- · Später Auftrieb (late)
- · Referenzfläche (control)

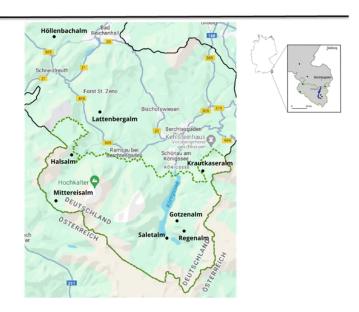


Abb. 126: Untersuchungsgebiet Almen und Varianten

Untersuchungsgebiet

Abb. 127: Untersuchungsgebiet Almen

Datenerhebung - Vegetation

- Gefäßpflanzen nach Art und Deckungsgrad
- Kartierungszeitpunkte in 2021 und 2022
 - 1. vor dem Auftrieb Mitte April Juni
 - 2. zum Vegetationshöhepunkt Mitte Juni August
- Größe und Anzahl Plots:
 - 13 kartierte quadratische Flächen je Alm (3 Stück je Teilfläche,1x auf Nullfläche)
 - Plotgröße: 9 m²

Grasnarbenhöhenmessung mit dem Pasturemeter

Abb. 128: Datenerhebung - Vegetation

Datenerhebung - Insekten

Bestäuberkartierung

- Tagfaltern, Widderchen, Hummeln, Wildbienen
- 2x (vor Weideauftrieb, Hauptvegetationszeit)
- Anzahl Blüten
- Zikaden
 - mittels Keschern und Saugproben
 - nur in 2021

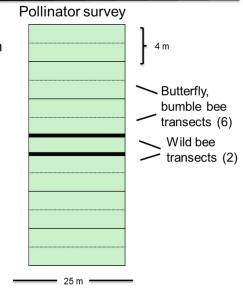


Abb. 129: Datenerhebung – Insekten

Datenerhebung – Insekten: Traits und Phylogenie der Wildbienen

Phylogenie

Traits

- Rüssellänge, Körpergröße
- Ökologische Nische: 11 Generalisten vs. 9 Spezialisten
- Flugzeit
- Sozialverhalten

Abb. 130: Datenerhebung – Insekten: Traits und Phylogenie der Wildbienen

Ergebnisse - Pflanzenvielfalt

α-Diversität: 27-65 Arten

• γ -Diversität: 80-177 Arten

• β-Diversität: am höchsten bei A002

 Bodensaure Standorte mit niedriger Pflanzendiversität!

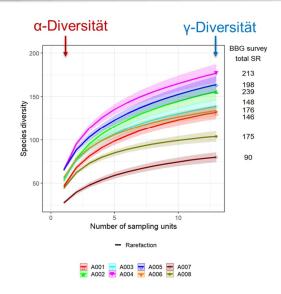


Abb. 131: Ergebnisse - Pflanzenvielfalt

Ergebnisse - Pflanzenvielfalt

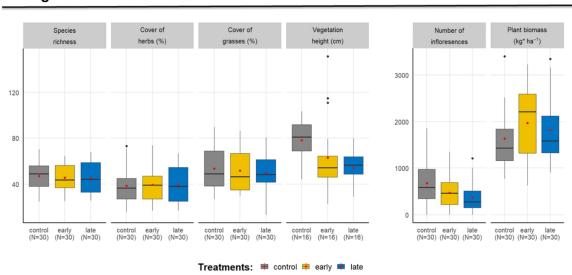


Abb. 132: Ergebnisse – Pflanzenvielfalt 2

Ergebnisse - Insektenvielfalt

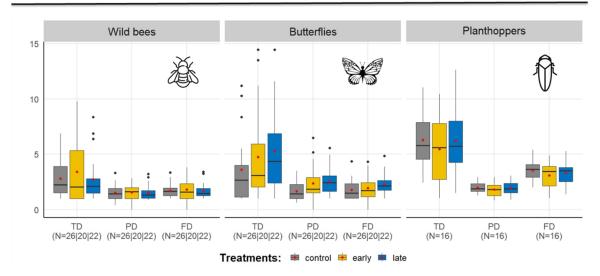


Abb. 133: Ergebnisse - Insektenvielfalt

Ergebnisse - Insektenvielfalt

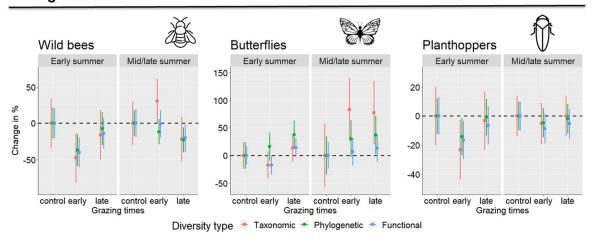


Abb. 134: Ergebnisse – Insektenvielfalt 2

Wildbees June/July August Butterflies June/July August June/July August Early > Late Early > Late Early > Late D. 10 Elevation 0.79 D. 22 D. 24 D. 25 Planthoppers June/July August D. 30 Elevation 0.82 D. 30 D. 3

Ergebnisse - Insektenvielfalt: Einfluß von Beweidung über Vegetation

Abb. 135: Ergebnisse - Insektenvielfalt: Einfluß von Beweidung über Vegetation

Abb. 136: Fazit

5 WebGras Schätzung der potenziellen Futterqualität des Grundfutters für den ersten Aufwuchs in Südtiroler Dauerwiesen

Giovanni Peratoner

Schätzung der potenziellen Futterqualität des Grundfutters für den ersten Aufwuchs in Südtiroler Dauerwiesen

Giovanni Peratoner

G. Romano, A. Dovas, A. Bodner, A. Kasal, E. Stimpfl, A. Schaumberger, R. Resch, H.P. Piepho, C. Florian, U. Figl

Weihenstephaner Grünlandgespräche, 18.03.2024

www.laimburg.it

Abb. 137: Titelbild

Inhalte

- O Vorgeschichte und Entwicklung
- O Die webGRAS-App
- O Anwendung in der Praxis
- O Ausblick

www.laimburg.it

Abb. 138: Inhalte

Vorgeschichte

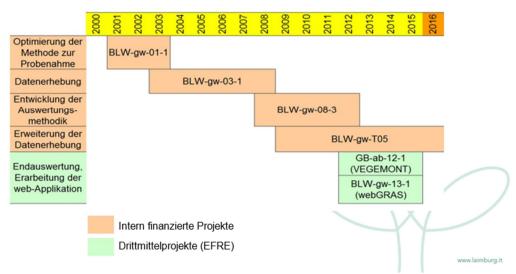


Abb. 139: Vorgeschichte

Sequentielle Probenahme (4 x 0,25 m² pro Termin)

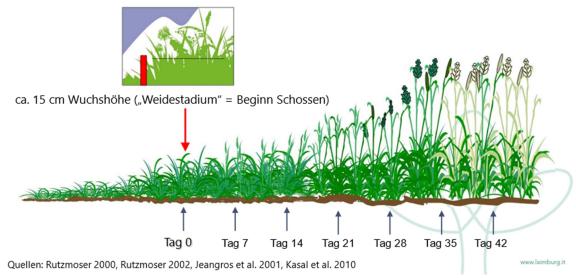


Abb. 140: Sequentielle Probenahme

Datenstruktur

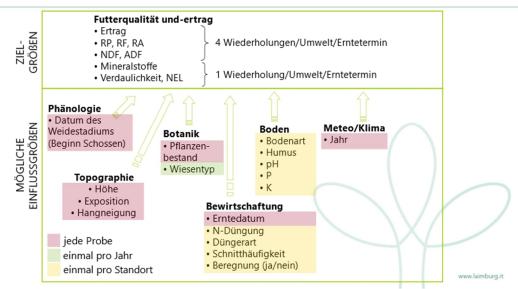


Abb. 141: Datenstruktur

Datenbestand 2015

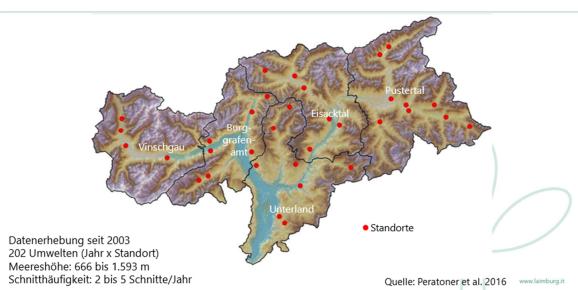


Abb. 142: Datenbestand 2015

Ansatz bei Planung und Erstellung der webGRAS-App

- O Kostenloses online Service für die lokale Praxis
- O Dreisprachig verfügbar
- O Flächendeckende Schätzung (alle Einflussgröße "überall" verfügbar), dafür Kompromisse auf Genauigkeit möglich
- O Automatisierte, kostenlose Berechnung der Einflussgrößen (z.B. GDD), um Kontinuität und Unabhängigkeit von Dritten zu sichern
- Aktives Input der Nutzer*innen erwünscht, um die Genauigkeit zu erhöhen und Lerneffekt zu fördern
- O Anonyme Verwendung, um die Nutzung zu fördern und dem Risiko vorbeugen, dass unechte Information aus Angst vor Kontrollen geliefert wird

www.laimburg.i

Abb. 143: Ansatz bei Planung und Erstellung der webGRAS-App

Projektteam und Kooperationen LAIMBURG Beratung bei Modellierung Statistische Beratung Bereitstellung von Meteodaten meteorologischer Größen H.-P. Piepho Hydrographisches Amt Andreas Schaumberger (HBLFA R.-G.) (Uni Hohenheim) der Autonomen Provinz Bozen **Projektteam VZ Laimburg** Giovanni Peratoner (Projektleiter) In vitro-Analysen Giuseppe Romano (Projektmitarbeiter) Aldo Matteazzi, Arnold Bodner (Datenerhebung, der Verdaulichkeit Futtermittelanalysen) Reinhard Resch Claudia Florian, Ulrich Figl (Datenerhebung) (HBLFA R.-G.) Matthias Siller, Kathrin Plunger, Hannes Vill, Cristina Gadotti (Projektmanagement) Praxisnahe Gestaltung der Applikation, **Programmierung** Verbreitung der Ergebnisse und Softwareentwicklung Südtiroler Informatik AG 能的 OI.

Abb. 144: Projektteam und Kooperationen

Klimatische Charakterisierung und Ersatz des Jahres durch meteorologische Variablen

- O Potenzielle Globalstrahlungssumme
- O Growing Degree Days (Temperatursumme)
- Summe/MW der täglichen Abweichungen des Niederschlags vom langjährigen Mittelwert an Referenzstationen innerhalb homogener Niederschlagsbezirke

zwischen einer Woche vor Beginn Schossen und Mähdatum

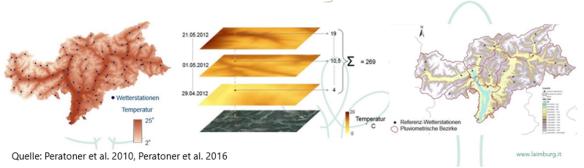
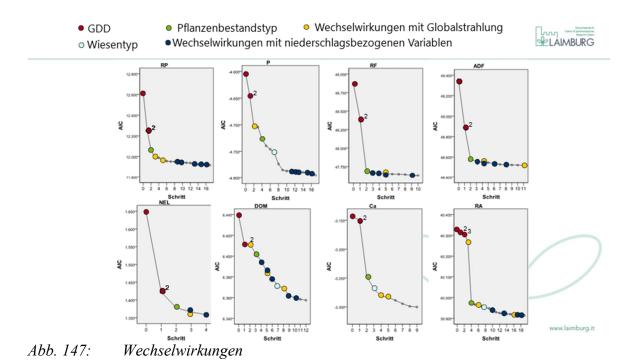


Abb. 145: Klimatische Charakterisierung und Ersatz des Jahres durch meteorologische Variablen

Vorgehen bei Modellentwicklung



- O Schrittweise Vorwärts entwickelte gemischte Modelle, ausgehend vom Basismodell mit Designeffekten und Temperatursummen (AIC als Kriterium)
- O Anschließend Modellvalidierung durch 5 -fache Kreuzvalidierung (R² zwischen beobachteten und vorhergesagten Werten des fixen Teils des Modells)
- O Berücksichtigung verschiedener Szenarien der Verfügbarkeit von Informationen seitens des Nutzers → Entwicklung 4 verschiedener Modelle für jeden Parameter mit:
 - O allen potenziell verfügbaren Variablen
 - O nur wahrscheinlich immer verfügbaren Variablen
 - O Verzicht auf die Information zum Wiesentyp
 - O Verzicht auf die Information zu den Bodeneigenschaften

Quelle: Romano et al. 2016

www.laimburg.it

Abb. 146: Vorgehen bei Modellentwicklung

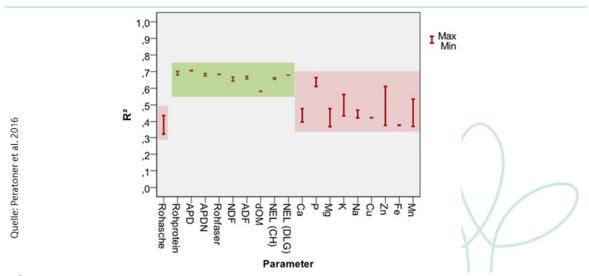

Pflanzenbestandstyp

Abb. 148: Pflanzenbestandstyp

Vorhersagegenauigkeit der statistischen Modelle

R²: quadrierte Korrelation zwischen beobachteten und vorausgesagten Werten (fixer Teil des Modells) der 5-fachen Kreuzvalidierung Abb. 149: Vorhersagegenauigkeit der statistischen Modelle

Zusammenarbeit mit Stakeholdern in der Entwicklungs - und Testphase

- O Definition der Priorität der zu erstellenden statistischen Modelle
- O Einschätzung der den meisten Nutzern bekannten Größen
- O Auswahl der zu verwendbaren Arten für die Erkennung des Wiesentyps
- O Überprüfung der Praxistauglichkeit des Workflows der Applikation sowie der Eingabemasken und der Hilfetexte

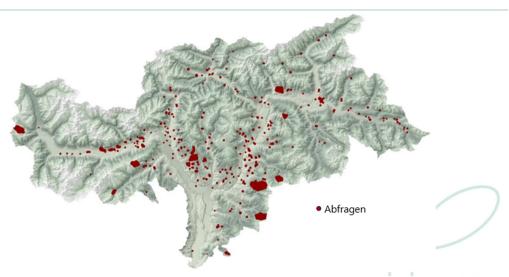
Zusammenarbeit mit Stakeholdern in der Entwicklungs- und Testphase Abb. 150:

webGRAS ist seit 2016 online

Abb. 151: webGRAS ist seit 2016 online

Abb. 152: webGRAS-Beispielsbericht

Wofür kann webGRAS genutzt werden?


- O Kein Ersatz von Laboranalysen von Futterproben, aber...
- O ...Richtwerte zur Orientierung, wenn Laboranalysen nicht möglich sind (vor allem, wenn die sensorische Prüfung miteinbezogen wird)
- O Im Vergleich zu den Futterwerttabellen: Berücksichtigung des Wetterverlaufs + keine Ermittlung des phänologischen Stadiums mittels Referenzarten
- O Vergleich von webGRAS -Werten und Laborergebnisse (bei starken Abweichungen ist die Futterwerbung und –konservierung zu überprüfen)
- O Didaktischer Effekt: Schätzung des Effekts der Verschiebung des Schnittzeitpunktes

www.laimbu

Abb. 153: Wofür kann webGRAS genutzt werden?

Nutzungsstatistik

1130 Abfragen bis 2023, davon 19% sind geleitete Übungen; relativ gute Verteilung innerhalb des Südtiroler Grünlands *Abb. 154: Nutzungsstatistik*

Wie kommt webGRAS in der Praxis an?

O Benutzerfreundlichkeit wurde von den Schülern der Fachschulen für Landwirtschaft positiv bewertet (67% "leicht", 33% "sehr leicht")

- O Haupthindernisse beim Einsatz
 - O Regelmäßige Erhebung der Daten im Feld
 - O Regelmäßige Beobachtung (v.A. Wuchshöhe) benötigt Zeit
 - O Botanische Aufnahmen erfordern spezifische Ausbildung
 - $\ensuremath{\mathsf{O}}$ Die Daten können aktuell nur nach und nach auf Papier festgehalten werden
 - O Die Abfrage ist nur zeitversetzt möglich

www.laimburg.it

Abb. 155: Wie kommt webGRAS in der Praxis an?

Zukünftige Weiterentwicklung?

- O Automatischer Import der eigenen Betriebsflächen (dann aber keine Anonymität mehr möglich)
- O Schrittweiser Eintrag von Daten seitens der Nutzer*innen (Möglichkeit der Speicherung von unvollständigen Anfragen)
- O Verbesserung der Genauigkeit und Echtzeit -Berechnung von Umweltvariablen (ggf. Echtzeit -Schätzung)
- O Integrierung in der Applikation von Korrekturen für die Konservierungs und Lagerbedingungen bzw. interaktive Anleitung zur sensorischen Prüfung des Futters
- O Erweiterung auf Ertrag?
- O Erweiterung auf Folgeschnitte

www.laimburg.it

Abb. 156: Zukünftige Weiterentwicklung?

WebGras WebGras

Entwicklung des Datenbestands über die Zeit

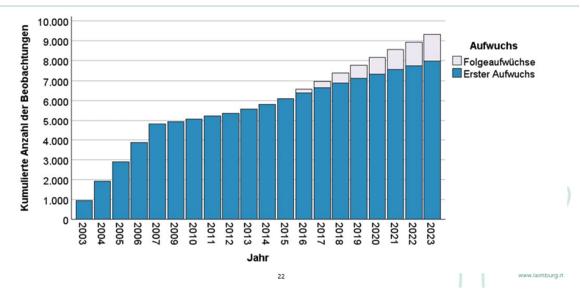


Abb. 157: Entwicklung des Datenbestands über die Zeit

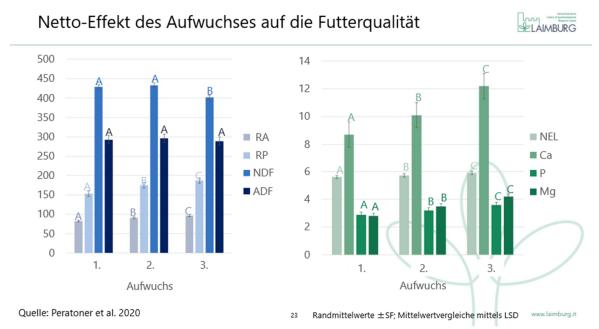


Abb. 158: Netto-Effekt des Aufwuchses auf die Futterqualität

Danke für die Aufmerksamkeit!

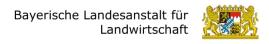


Abb. 159: Kontaktdaten

6 Belüftungsheuproduktuion und Heumilch

Stefan Thurner und Juliana Mačuhová,

Belüftungsheuproduktion und Heumilch

Stefan Thurner und Dr. Juliana Mačuhová, Institut für Landtechnik und Tierhaltung (ILT)

Weihenstephaner Grünlandgespräche 18./19.03.2024

Abb. 160: Titelbild

- 1. Heumilch und Heumilchregulativ
- 2. Verfahrensübersicht
- 3. Ergebnisse Heubelüftungsversuchsanlage/Praxisbetriebe
- 4. Ergebnisse arbeitswirtschaftliche Untersuchungen
- 5. Ergebnisse Umfrage
- 6. Fazit

Abb. 161: 1. Heumilch und Heumilchregulativ

Einleitung - Heumilch

 Heumilchproduktion ohne eigene Vermarktung in D derzeit nur regional möglich (z. B. keine Molkerei in Franken)

- Heumilchaufschläge zwischen 2-6 cent derzeit realisierbar
- Heumilch erfüllt alle aktuell im Gespräch befindlichen "Premiumstrategien" – Ohne Gentechnik – Verbot der ganzjährigen Anbindehaltung – Weidegang – heimisches Futter – regional
- Heumilch ist trotzdem (noch) eine Nische hat aber internationale Anerkennung:
 - Garantiert traditionelle Spezialität (g.t.S.) Heumilch von Kühen, Schafen und Ziegen europaweit seit 04.03.2016 geschützt (EU-VO Nr. 1151/2012)
 - "traditionelle Heumilchwirtschaft im österreichischen Alpenbogen" ist landwirtschaftliches Weltkulturerbe (Beschluss der FAO und Urkundenübergabe am 09.03.2024 in Salzburg)

Stefan Thurner ILT1b, 2024

+ 3

Institut für Landtechnik und Tierhaltung

Abb. 162: Einleitung Heumilch

Einleitung – Anforderungen an g. t. S. Heumilch

- Anmeldung zum Kontrollkonzept "Heumilch g. t. S" (in Bayern: Institut für Markt und Ernährung der LfL)
- Zwingende Einhaltung des sogenannten "Heumilchregulativs" der EU und der länder- sowie bundesländerspezifischen Umsetzungsverordnungen
- Erlaubte Futtermittel
 - Grundfutter + Raufutter = frisches Gras, Leguminosen und Kräuter (Grünfutterperiode) sowie Heu (Winterfutterperiode) (TM-Anteil in der Jahresration mind. 75 %)
 - Positivliste f
 ür Kraftfutter und weitere Regelungen
- Unerlaubte Futtermittel (Gärfuttermittel (Silage, Feuchtheu...), GVO-Futter u. a.)
- Bestimmungen zu Düngung und chem. Hilfsstoffen (z. B. kein Klärschlamm oder nur selektiver PSM-Einsatz…)
- Lieferverbote und Wartezeiten für Zukauftiere
- Deutliche Abgrenzung von Produktionseinheiten
- Und weitere Regelungen

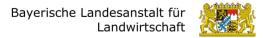
Stefan Thurner ILT1b, 2024

Institut für Landtechnik und Tierhaltung

Abb. 163: Einleitung – Anforderungen an g. t. S. Heumilch

Zielsetzung mit einer Heubelüftungsanlage

- Heubelüftung ist eine Form der Grundfutterkonservierung
- Heubelüftung dient in erster Linie der Verbesserung der Grundfutterqualität (MJ ME und CP) sowie der Reduzierung von Futterverlusten entlang der gesamten Kette vom Feld bis zum Trog im Vergleich zu Silage/Bodenheu
- Gezielte Erzeugung von Belüftungsheu als Premiumfutter z. B. für Hochleistungstiere oder Jungtiere ist gute Ergänzung zur Silage
- Differenzierte/abgestufte Nutzung des Grünlands
- Verwertung von vorhandener Abwärme z. B. von einer Biogasanlage
- Reduzierung des Ernterisikos (im Vergleich mit Bodenheu)
- Produktion von Heumilch



Stefan Thurner ILT1b, 2024

stitut für Landtechnik und Tierhaltung

Abb. 164: Zielsetzung mit einer Heubelüftungsanlage

- 1. Heumilch und Heumilchregulativ
- 2. Verfahrensübersicht
- 3. Ergebnisse Heubelüftungsversuchsanlage/Praxisbetriebe
- 4. Ergebnisse arbeitswirtschaftliche Untersuchungen
- 5. Ergebnisse Umfrage
- 6. Fazit

Abb. 165: 2. Verfahrensübersicht

Verfahrensübersicht

Institut für Landtechnik und Tierhaltung

Abb. 166: Verfahrensübersicht

Hängedrehkran

Bildquelle: S. Thurner 2017

nstitut für Landtechnik und Tierhaltung

Abb. 167: Hängedrehkran

Vergleich Boxen- und Rundballenbelüftung

Merkmal	Вох	Rundballen					
Bröckelverluste	geringer	höher					
Heumenge	größere Mengen → Umstellung auf Heufütterung	kleinere Mengen → z. B. für Hoch- leistungskühe o. Kälber					
Schlagkraft	höher	geringer					
Belüftungsdauer	40 – 60 Stunden + Nachbelüften	< 24-30 Stunden + ggf. Nachbelüften					
Arbeitsablauf	Einlagern (2 Pers. f. Ladewagen, Heukran), Belüften + Nachbel., Umlagern	Pressen/Transport, Belüften, Wenden, Belüften, ggf. Nachbel., Umlagern					

Stefan Thurner ILT1b, 2024

stitut für Landtechnik und Tierhaltung

Abb. 168: Vergleich Boxen- und Rundballenbelüftung

Bayerische Landesanstalt für Landwirtschaft

- 1. Heumilch und Heumilchregulativ
- 2. Verfahrensübersicht
- 3. Ergebnisse Heubelüftungsversuchsanlage/Praxisbetriebe
- 4. Ergebnisse arbeitswirtschaftliche Untersuchungen
- 5. Ergebnisse Umfrage
- 6. Fazit

Abb. 169: 3. Ergebnisse Heubelüftungsversuchsanlage/Praxisbetriebe

Heubelüftungsversuchsanlage (HBVA)

Ziele

- Systematischer Vergleich aktueller Heubelüftungstechniken
 - ✓ Energieverbrauch
 - ✓ Trocknungsleistung
 - ✓ Futterqualität
- Erfassung in der Heubelüftungsversuchsanlage
- Erfassung vergleichbarer Daten in Praxisanlagen

Stefan Thurner II T1h 202

11

Institut für Landtechnik und Tierhaltung

Abb. 170: Heubelüftungsversuchsanlage (HBVA) Ziele

Heubelüftungsversuchsanlage (HBVA)

- Boxensystem
 - ✓ am häufigsten in der Praxis
 - ✓ kostengünstigste Variante für große Mengen
- Zwei Boxen mit je 30 m²
 - ✓ parallel befüllt → relativ identisches Material
 - ✓ gleichzeitige Trocknung → gleiche Witterungsbeding.
 - ✓ Box West: Luftentfeuchter (Umluftverfahren)
 - ✓ Box Ost: Wärmetauscher + Wärmerückgewinnung

Stefan Thurner ILT1b, 2024

andtechnik und Tierhaltung

Abb. 171: Heubelüftungsversuchsanlage (HBVA) Boxen

Heubelüftungsversuchsanlage (HBVA)

- Heubelüftungsversuchsanlage Technik:
 - Radialventilatoren (GB Birk, RVN 630-35 / 10)
 - Luftentfeuchter (Frigortec, HT60)
 - Wärmetauscher (WT, Waltinger, 380 kW)
 - Wärmerückgewinnung (WRG, Arwego, ERC-T 30/56)
- Praxisbetrieb A: Luftentfeuchter im Um-/Frischluftbetrieb mit Steuerung
- Praxisbetrieb B: Luftentfeuchter mit Kreuzstromplattenwärmetauscher im Um-/Frischluftbetrieb
- Praxisbetrieb C: Wärmetauscher (Hackschnitzel-Fernwärme) mit Kreuzstromplattenwärmetauscher für Zu-/Abluft
- Messung von Luftvolumenstrom, -druck, -feuchte und -temperatur mehrmals im System
- Messung von Energieverbräuchen, Gewicht, Trocknungsdauer und Kondensatvolumen

Stefan Thurner ILT1b, 2024

13

Institut für Landtechnik und Tierhaltung

Abb. 172: Heubelüftungsversuchsanlage (HBVA) Technik

Heubelüftungsversuchsanlage (HBVA) - Bilder

Bildquellen: S. Jakschitz-Wild, 2017

Stefan Thurner ILT1b, 2024

Tieskelbone

Abb. 173: Heubelüftungsversuchsanlage (HBVA) Bilder

Verfahrenstechnik Ergebnisse zum Energieverbrauch (HBVA + Praxisbetr.) 2019/20

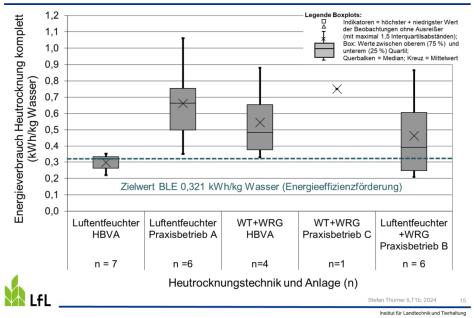
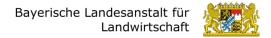


Abb. 174: Verfahrenstechnik Ergebnisse zum Energieverbrauch (HBVA + Praxisbetr.) 2019/20


Zusammenfassung - Verfahrenstechnik

- Energieeffiziente, leistungsfähige Techniken stehen für die Trocknung zur Verfügung
 - Ziele der Energieeffizienzförderung der BLE 0,312 kWh / kg Wasserverlust werden mit allen Techniken bei günstiger Konstellation (Witterung, Trockengut usw.) erreicht – im Mittel liegt der Energieeinsatz bei 0,5 kWh/kg Wasserverlust
 - Einsatzbedingungen + Steuerung sind entscheidend!
- Trocknungsdauer sollte 40 bis 60 Stunden betragen damit ein effizienter Energieeinsatz gewährleistet werden kann (zu schnelle und zu lange Trocknung kosten mehr Energie)
- Dachabsaugung und Nutzung vorhandener Wärme (Biogas-BHKW, Hackschnitzelheizung) ist ein muss
- Trocknung mit Strom = Luftentfeuchter ist energieeffizient aber in D oft die teuerste Lösung
- Trocknung mit regenerativer Wärme / Abwärme = nicht energieeffizient aber kostengünstiger (falls verfügbar)

Stefan Thurner ILT1b, 2024 16

Institut für Landtechnik und Tierhaltung

- 1. Heumilch und Heumilchregulativ
- 2. Verfahrensübersicht
- 3. Ergebnisse Heubelüftungsversuchsanlage/Praxisbetriebe
- 4. Ergebnisse arbeitswirtschaftliche Untersuchungen
- 5. Ergebnisse Umfrage
- 6. Fazit

Abb. 176: 4. Ergebnisse arbeitswirtschaftliche Untersuchungen

Ziele der arbeitswirtschaftlichen Untersuchungen

- → Untersuchung der "lose Verfahrenskette" bei Belüftungsheuproduktion und -fütterung
- Arbeitswirtschaftliche Ist-Situation (Arbeitstagebücher)
 - Vergleich zur Silageproduktion und -fütterung
- · Ermittlung arbeitswirtschaftlicher Planungsdaten
 - Exakte Zeitmessungen für ausgewählte Verfahren
 - Heueinfahren
 - Umlagern
 - Heufütterung
 - Erfassung der notwendigen Einflussgrößen
 - Eingefahrene Heutrockenmassemenge
 - Manipulierte Heutrockenmassemenge pro Greifer
 - Vorgelegte Heutrockenmassemenge beim Füttern
 - und viele andere
 - Erstellung der Kalkulationsmodelle zur Berechnung des Arbeitszeitbedarfs

Stefan Thurner ILT1b, 2024

titut 60 t and table in and Timbellian

Abb. 177: Ziele der arbeitswirtschaftlichen Untersuchungen

Arbeitswirtschaftliche Ist-Situation (Ergebnisse Arbeitstagebücher)

Arbeitszeitbedarf für die Produktion von Belüftungsheu

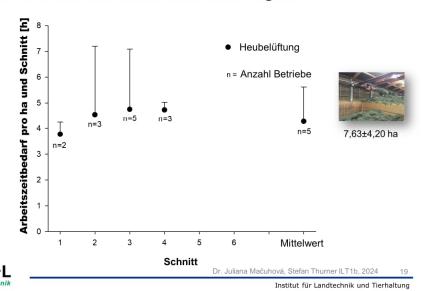


Abb. 178: Arbeitszeitbedarf für die Produktion von Belüftungsheu

Arbeitswirtschaftliche Ist-Situation (Ergebnisse Arbeitstagebücher)

Arbeitszeitbedarf für die Produktion von Belüftungsheu und Grassilage

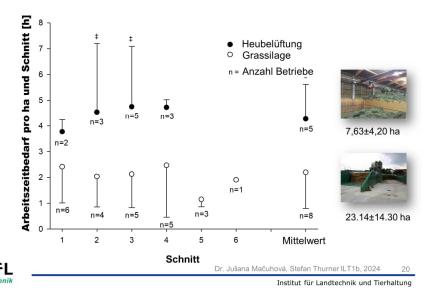


Abb. 179: Arbeitszeitbedarf für die Produktion von Belüftungsheu und Grassilage

Arbeitswirtschaftliche Ist-Situation (Ergebnisse Arbeitstagebücher)

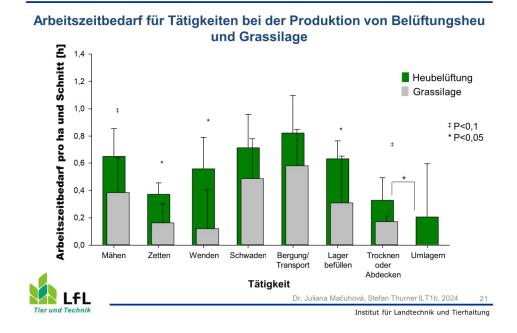
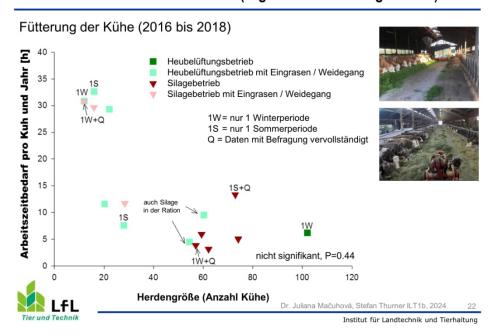



Abb. 180: Arbeitszeitbedarf für Tätigkeiten bei der Produktion von Belüftungsheu und Grassilage

Arbeitswirtschaftliche Ist-Situation (Ergebnisse Arbeitstagebücher)

Abb. 181: Fütterung der Kühe (2016 bis 2018)

Zusammenfassung

Arbeitswirtschaftliche Ist-Situation

Grünfutterente

 Für die Belüftungsheuproduktion haben die untersuchten Betriebe pro ha und Schnitt im Durchschnitt 2,5 mal länger als für die Silageproduktion benötigt.

Fütterung der Kühe

 Beim Füttern der Kühe überwiegend mit Belüftungsheu konnte kein arbeitswirtschaftlicher Vorteil im Vergleich zur Fütterung überwiegend mit Silage beobachtet werden.

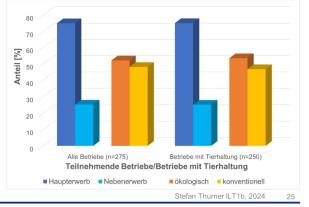
Stefan Thurner ILT1b, 2024

23

Institut für Landtechnik und Tierhaltung

Abb. 182: Zusammenfassung Arbeitswirtschaftliche Ist-Situation

Bayerische Landesanstalt für Landwirtschaft

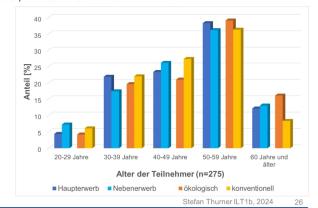


- 1. Heumilch und Heumilchregulativ
- 2. Verfahrensübersicht
- 3. Ergebnisse Heubelüftungsversuchsanlage/Praxisbetriebe
- 4. Ergebnisse arbeitswirtschaftliche Untersuchungen
- 5. Ergebnisse Umfrage
- 6. Fazit

Abb. 183: 5. Ergebnisse Umfrage

Ergebnisse Umfrage Heubelüftungstechnik

- Umfrage im Winter 2020/21 durchgeführt
- Rücklaufquote Bayern: 51,3 % (n= 275 Rückmeldungen)
- 86 % Schwaben, 12 % Oberbayern, Rest 2 %
- 3/4 Haupterwerbsbetriebe, 1/4 Nebenerwerbsbetriebe
- ~1/2 Öko und konv.



Institut für Landtechnik und Tierhaltung

Abb. 184: Ergebnisse Umfrage Heubelüftungstechnik

Ergebnisse Umfrage Heubelüftungstechnik

- Umfrage im Winter 2020/21 durchgeführt
- Rücklaufquote Bayern: 51,3 % (n= 275 Rückmeldungen)
- 86 % Schwaben, 12 % Oberbayern, Rest 2 %
- 3/4 Haupterwerbsbetriebe, 1/4 Nebenerwerbsbetriebe
- ~1/2 Öko und konv.
- Vergleichsweise mehr jüngere Betriebsleiter

Institut für Landtechnik und Tierhaltung

Abb. 185: Ergebnisse Umfrage Heubelüftungstechnik2

Ergebnisse Umfrage Heubelüftungstechnik

Grünlandnutzung sehr differenziert (abgestufte Grünlandnutzung)

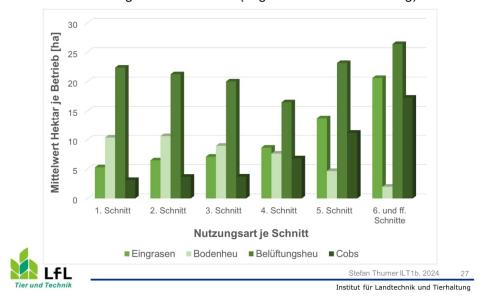
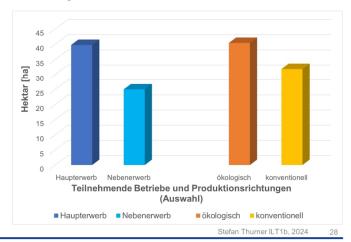



Abb. 186:

Ergebnisse Umfrage Heubelüftungstechnik

- Grünlandnutzung sehr differenziert (abgestufte Grünlandnutzung)
- Flächenausstattung konventionell: 31,8 ± 27,8 ha
 - ökologisch: 40,4 ± 24,8 ha

Grünlandnutzung sehr differenziert (abgestufte Grünlandnutzung)

Abb. 187: Grünlandnutzung sehr differenziert (abgestufte Grünlandnutzung) Flächenausstattung

Ergebnisse Umfrage Heubelüftungstechnik

- Grünlandnutzung sehr differenziert (abgestufte Grünlandnutzung)
- Flächenausstattung konventionell: 31,8 ± 27,8 ha
 ökologisch: 40,4 ± 24,8 ha

Tierhaltung im Mittel 48 Rinder davon 38 MV

Institut für Landtechnik und Tierhaltung

Abb. 188: Tierhaltung im Mittel 48 Rinder davon 38 MV

Ergebnisse Umfrage Heubelüftungstechnik

- Grünlandnutzung sehr differenziert (abgestufte Grünlandnutzung)
- Flächenausstattung konventionell: 31,8 ± 27,8 ha

- ökologisch: 40,4 ± 24,8 ha

- Tierhaltung im Mittel 48 Rinder davon 38 MV
- 230 Betriebe Boxentrocknung, 21 Ballentrocknung, 12 beides

Stefan Thurner ILT1b, 2024

Institut für Landtechnik und Tierhaltung

Ergebnisse Umfrage Heubelüftungstechnik

Zufriedenheit mit System Boxen-/Ballenbelüftung

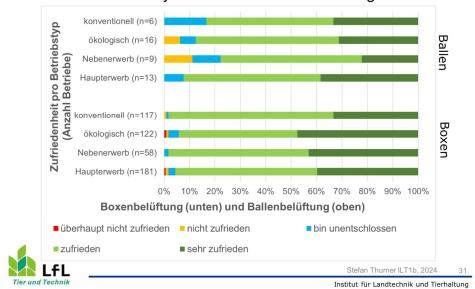


Abb. 190: Zufriedenheit mit System Boxen-/Ballenbelüftung

Ergebnisse Umfrage Heubelüftungstechnik

Jahr der Inbetriebnahme der Heubelüftungsanlage

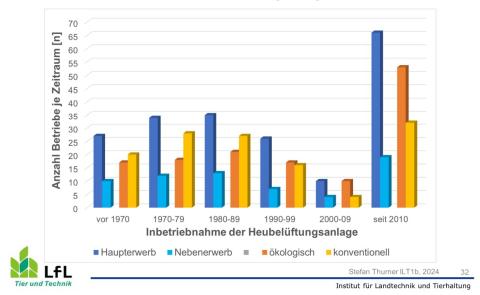


Abb. 191: Jahr der Inbetriebnahme der Heubelüftungsanlage

Ergebnisse Umfrage Heubelüftungstechnik

- Jahr der Inbetriebnahme der Heubelüftungsanlage
- Erzielter Milchpreis 2019 in Abhängigkeit von der Risikobereitschaft

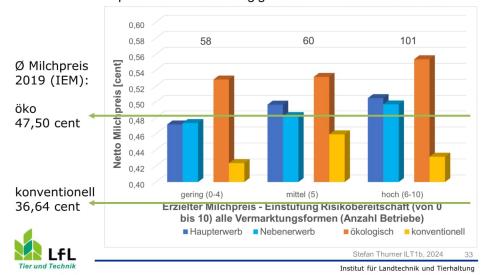


Abb. 192: Erzielter Milchpreis 2019 – in Abhängigkeit von der Risikobereitschaft

Ergebnisse Umfrage Heubelüftungstechnik

• Einschätzung Stabilität g. t. S. Heumilchpreis

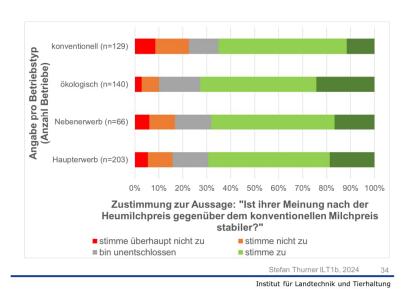


Abb. 193: Einschätzung Stabilität g. t. S. Heumilchpreis

Fazit

- + Effiziente Technik für alle Betriebsgrößen steht zur Verfügung
- + Unterdachabsaugung und eigene Wärmequellen (Biogas-BHKW, Hackschnitzel) senken die Kosten
- + Unterdachtrocknung senkt das Ernterisiko
- + Hohe Futterqualität mit geringen Verlusten
- + Vermarktung als Heumilch bringt höhere Wertschöpfung
- Hohe Investitionskosten und hohe variable Kosten
- Höherer Arbeitsaufwand bei der Ernte und für das Belüften
- Milchvermarktung mit Aufpreis erforderlich
- Zusätzliche Anforderungen des Heumilchregulativs
- Neueinsteiger "zahlen Lehrgeld"

Stefan Thurner ILT1b, 2024

35

Institut für Landtechnik und Tierhaltung

Abb. 194: Fazit

Vielen Dank für Ihre Aufmerksamkeit!

Wir danken

- dem Bayerischen Staatsministerium für Ernährung, Landwirtschaft und Forsten für die Finanzierung des Forschungsprojekts (A/18/06)
- den Firmen Arwego, Frigortec, Gerätebau Birk und Waltinger für das Sponsoring der Technik für die Heubelüftungsversuchsanlage
- den beteiligten Landwirten für die bereitwillige Zusammenarbeit
- der ILT-Werkstatt und der AG Messtechnik für die unermüdliche Unterstützung

Stefan.Thurner@LfL.Bayern.de Juliana.Macuhova@LfL.Bayern.de

36

Institut für Landtechnik und Tierhaltung

Abb. 195: Danksagung

7 Sortenprüfung Prüfung und Ergebnisse aus Sicht der Länder

Stephan Hartmann (LfL)

Sortenprüfung Prüfung und Ergebnisse aus Sicht der Länder

Dr. Stephan Hartmann Institut für Pflanzenbau und Pflanzenzüchtung

Abb. 196: Titelbild

Wünsche der Länderdienststellen ⇒ Alle Daten um den Auftrag optimal zu erfüllen

Der Auftrag ist es die Sorten mit der jeweils besten Eignung für die jeweils <u>regionalen</u>

Bedingungen (Klima, Boden, Erregerspektrum, Nährstoffverfügbarkeit, Auflagen),

Nutzungen: Grünland (Wiese/Weide), Feldfutterbau (Nutzungsdauer), Nutzungsintensität

und

Verwertung: Tier (Rinder [Mutterkuh, Milchvieh, Jungvieh], Schafe, Ziegen, Hühner...) oder Biogas

herauszufinden

Institut für Pflanzenbau und Pflanzenzüchtung

Abb. 197: Wünsche der Länderdienststellen

Das Sortenprüfsystem bei Futterpflanzen ist "kosteneffizient" ...

Es ist eher ein im <u>Rahmen der verfügbaren Möglichkeiten</u> von den Beteiligten weitgehend gemeinsam optimiertes System, dass "auf Kante genäht" ist

- Die Zahl der Standorte und damit die Abdeckung der Anbausituationen ist auch bei den großen Arten knapp WD Standorte: ca. 10 WP und ca. 20 LSV [WW: WP 1-3 ~ 35 LSV > 100]
- Die Personalsituation im Versuchswesen ist im staatlichen Bereich bei allen Beteiligten stets knapp und eher durch stete Rückgänge gekennzeichnet
- Stete Verbesserungen in Bereich Verrechnung und Versuchstechnik kompensieren die Rückgänge bis jetzt im notwendigen Umfang
- > Qualitätsdatenerhebungen wurden reduziert und sollten wieder ausgeweitet werden
- > Steigende Anforderungen im nichtfachlichen Bereich wie "Barrierefreiheit" bauen immer wieder faktisch erst zu überwindende Barrieren zur Information auf
- > Personalreduzierung und -ausfälle über längere Zeiträume in einzelnen Bereichen an staatlichen Stellen führen dort zur zwangsläufigen Priorisierung im Gesamtaufgabenbereich

Hartmann - IPZ 4b - 2023 / 3

Institut für Pflanzenbau und Pflanzenzüchtung

Abb. 198: Das Sortenprüfsystem bei Futterpflanzen ist "kosteneffizient"

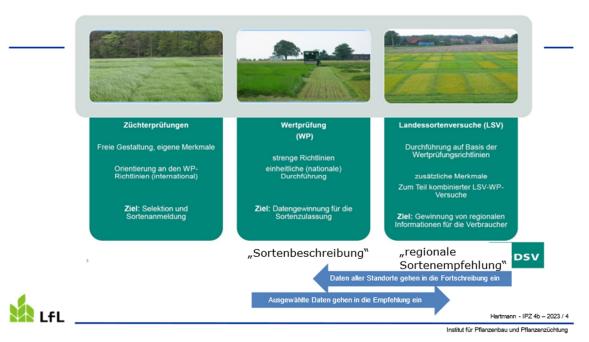


Abb. 199: Sortenbeschreibung und regionale Prüfung Anbauregionen

Anbauregionen als Grundlage regionaler Empfehlung

Abb. 200: Anbauregionen

Institut für Pflanzenbau und Pflanzenzuchtung

Ein "schlankes" Prüfsystem aus WP, LSV, und SWersuchen

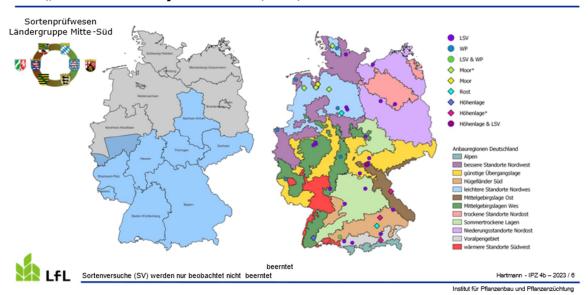


Abb. 201: das schlanke Prüfsystem

Von der Anmeldung zur Empfehlung- Beispiel WD (Registerprüfung nicht dargestellt) KJ Ifd. J. Prüfung Stämme 2019 Stämme 2020 **Ertrag Ertrag** Ertrag Höhenlage/ Höhenlage/ Höhenlage/ (Qualität) (Qualität) (Qualität) Rost Rost 2018 Ansaatjahr Ansaatjahr Wertprüfung 2019 1. HNJ 1. HNJ Ansaatjahr Ansaatjahr (WP) 2020 2. HNJ 2. HNJ 1. HNJ 1. HNJ Ansaatjahr Ansaatjahr Anlage jährlich 1. HNJ 2021 3. HNJ 3. HNJ 2. HNJ 2. HNJ 1. HNJ 3. HNJ 3. HNJ 2. HNJ 2. HNJ 2022 Zul. (Apr) Zul. (Apr) 2023 Zul. (Apr) Zul. (Apr) 3. HNJ 3. HNJ Länderversuche 2024 Ansaatjahr Ansaatjahr Zul. (Apr) Zul. (Apr) (LSV/SV) Anlage alle 2 1. HNJ 1. HNJ Zu spät für die 9 2. HNJ 2. HNJ Jahre, (Zulassungen aus Sortimentsplanung 2024 3. HNJ 10 3. HNJ Sortimente Anlage 11 2018/2019) Zul. 2020 zuspät für Ansaat 2020 Empf. AF Empf. GL Hartmann - IPZ 4b - 2023 / 7 Institut für Pflanzenbau und Pflanzenzüchtung

Abb. 202: Von der Anmeldung zur Empfehlung – Beispiel WD

Sortenranking aller in Deutschland zugelassenen u. geprüften Sorten für MitteSüd

L SV WEL SC	HES WEIDEL O	RAS															
Erträge Troc	ckenmasse																
1-2. HNJ 200	3 - 2020					- Absolu	dwerte :					- Relat	weste -]	
		AG 1=	trocken	AG 2 *	frisch	AG 100 =	Mitte-Súd	AG 1 =	trocken	AG 2	frisch.	AG 100 =	Mitte-Sod	1			
Anzieri .	Sorte		no.		Gesamt	Gesant	Ges amt	Oes and	Gesant	Oes and	Oes arre	Gesarre	Gesant	Oes and	Ossamt	trocken	frisch
Vesuchi					1. Savet		1. Sani_*		1. Schrit*	-	1. Solvié *		1. Schn(*		1. Sant	4	
	Adrina		4			155.1	40.4	150,5	54.2			97	100	97	100		(-)
31	Alamo			_		159,1	45,0	155,6	60,2			90	93	99	90		0
	Dalance					158.4	40,1	154.8	52.0	_		99	96	98	90		0
	Barnutra II	(7)				163.7	49,6	161,2	66.7			102	102	102	103		0
26	Dartrerto	(T)	4			159.4	47,9	155.3	53.3			99	90	99	90		0
26	0 aun b	(T)				159,3	40.8	158,2	53,7			90	90	100	90	***	0
6	0 қолут					100,1	48.0	160,5	54,0			104	99	102	100		(*)
4	B ocety1		4			109.4	40,2	150,1	54.6			90	101	101	101		0
	Capelli	(T)				158,1	40,2	158,0	66,2			99	101	100	102		0
3	Carital	(7)	4			104.3	52.8	150.3	56.9			102	109	100	106		0
13	Caphvis	(7)				158.4	40.5	157.1	52.6			99	96	100	97		0
	Okoar					153.4	40.0	155.2	53.3			96	94	90	90		(-)
50	Optomit	(T)	4			163.0	52.0	161.0	58.1			102	107	102	107	1	0
	Octores					163.3	47.2	157.0	51.6			102	97	100	96		0
37	Oorke	(T)	4			167.6	81.7	162.5	66.7			105	108	103	106		(*)
26	f abio	(7)	4			159.2	50.7	150.4	55.9			99	104	100	105		0
43	Gerrini	(7)				104.5	47.4	161.7	52.6			103	97	103	97		(*)
18	Gersins	(7)				160.0	49.0	150.7	54.2			100	101	99	100		ò
4	Giacomo		4			159.1	50.6	150.1	55.3			99	104	100	102	1	
20	Gisel	(T)				148.0	61.7	147.5	58.1			92	106	94	107		
21	Goldoni	(7)	4			155.1	50.3	154.0	56.1			97	103	98	103		(-)
26	Hera	(7)				154.2	40,1	154,0	65.1			90	101	98	101		(-)
13	la idor					151.3	50.1	153.3	55.3			94	103	97	102		(-)
22	tak a					159.5	40.5	155,1	51,3			90	96	98	96		0
26	Jeanne	(7)	4			167.6	49.4	156,1	54.6			96	101	99	101		Ö
4	Kingsgreen	(7)	4			100.0	61.9	164.2	67.7			104	107	104	106		(+)
28	Les cer					152.0	47.9	140.9	53.1			96	90	96	96		(-)
30	Lipsos	(7)	4			158.4	49,9	158.3	56,9			99	102	100	106		Ó
36	Lyrik	(7)	- 6			103.1	40.2	159.6	54.0			102	99	101	101		0
23	Maden	(D)	4			156.0	45.6	155.3	51.9			97	94	99	96		(-)
	Mekkup	- 10				162.6	40.3	157.0	55.0			101	99	100	101		0
-	Melina		- 6			101.9	47.0	157.9	54.5			101	97	100	100		ő
27	Meksustro	(%)	- 10			100.1	40.3	163.2	53.4			104	99	103	90	1	(*)
13	Meluprimer			_	_	100.7	50.1	161.5	54.6	_		104	103	102	100	1	
13	Menena	(7)				100.2										4	(*)
		(7)	4				48.5	162,1	54.4			103	100	103	100		(*)
13	Mess ins	(7)				105.5	40.1	150,0	63,6			103	101	101	90		(*)
36	Morunga		4			167,9	48.2	161,2	62.7			105	99	102	97		(*)
33	Mustela		4			104.4	40.0	159,1	51.7			102	96	101	96		0

Hartmann - IPZ 4b - 2023 /

Institut für Pflanzenbau und Pflanzenzüchtung

Abb. 203: Sortenranking

Etablierte übergreifende Beratungsgebiete

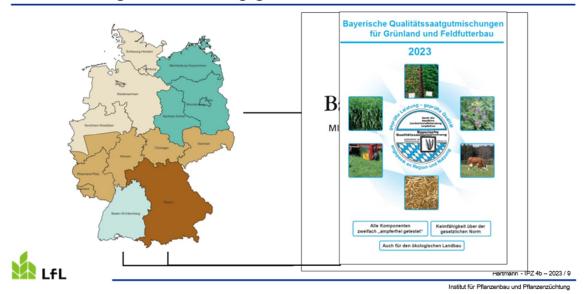


Abb. 204: Etablierte übergreifende Beratungsgebiete

Weiterentwicklung für der Auswahlkriterien für eine vorläufige Sortenempfehlung

für Feldfutterbau WD und WV:

kombinierte Schwelle damit für eine neu zugelassene Sorte überhaupt eine vorläufige Empfehlung (ohne abgeschlossenen LSV) ausgesprochen werden kann

- ➤ Erreichen des Ertragsniveau der besten 25 % der aktuell empfohlenen Sorten (nach Verrechnung Piepho) WV Gesamtertrag 1. und 2. HNJ (Gruppe E)
- > Erreichen der aktuellen Grenze für Rost der Gruppe E erreichen.
- > Erreichen mehrere Sorten eines Prüfungsjahrganges dieses Niveau wird nur die ertragreichste Sorte empfohlen.
- ➤ Bei WV bezieht sich die vorläufige Empfehlung auf die Überschreitung des Gesamtertrages 1. und 2. Hauptnutzungsjahres sowie der Überschreitung der Schwelle Rost für die Kategorie Ertrag (E).

Abb. 205:

Hartmann - IPZ 4b - 2023 / 10

Weiterentwicklung für Feldfutterbau WD und WV

Institut für Pflanzenbau und Pflanzenzüchtung

Weiterentwicklung für der Auswahlkriterien für eine vorläufige Sortenempfehlung

für WD Grünland:

- Die Schwellen für eine vorläufige Empfehlung bleibt auf dem bisherigen Niveau der besten 3 empfohlenen Sorten. Empfehlungsmerkmale:
 - ⇒ Hauptschwelle: Ausdauer,
 - ⇒ Ergänzende Schwellen: Ertrag, Narbendichte, Rost)
 - (⇒ weitere Merkmale können hinzugezogen werden, wenn zur Eingrenzung sinnvoll)
- > Erreichen mehrere Sorten eine Prüfungsjahrganges dieses Niveau wird nur die ausdauernste Sorte des anstehenden Prüfsortiments für die Ausdauerprüfung (= 2 SFG -Jahrgänge) empfohlen.

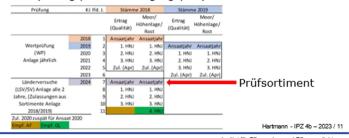


Abb. 206: Weiterentwicklung für WD Grünland

> Die Gesamtempfehlung bei WD (Feldfutterbau und Grünland) wird auf einen Umfang von 25 Sorten begrenzt, inkl. der max. fünf vorläufig empfohlenen neuen Sorten im 3 -Jahreszyklus (eine vorläufig empfohlene Sorte hat

Weiterentwicklung für der Auswahlkriterien für eine vorläufige Sortenempfehlung

➤ Die Gesamtempfehlung bei WV (Feldfutterbau) wird auf einen Umfang von 20 Sorten begrenzt, inkl. der max. drei vorläufig empfohlenen neuen Sorten im 3-Jahreszyklus (eine vorläufig empfohlene Sorte hat auch weiterhin - wie jede empfohlene Sorte - einen Mindestempfehlungszeitraum von 3 Jahren) begrenzt.

auch weiterhin - wie jede empfohlene Sorte - einen Mindestempfehlungszeitraum von 3 Jahren) begrenzt.

Die Grenzen Rost und Ertrag sowie weiter ergänzenden Merkmale werden bei jeder Neuerstellung der amtlichen Empfehlung so gesetzt, dass der Umfang der empfohlenen Sorten die Zahl von max. 25 (WD) bzw. 20 (WV) nicht überschreitet.

Hartmann - IPZ 4b - 2023 / 12

Abb. 207: Weiterentwicklung für der Auswahlkriterien für eine vorläufige Sortenempfehlung

Erinnerung an weiterbestehende Regeln:

- > Allg. Ersatzwertregel für fehlende Daten bei Merkmalen die für die Empfehlung relevant sind
 - ⇒ fehlt das Merkmal 1. Mal: Wert aus der letzten Beschreibenden Sortenliste wird übernommen
 - ⇒ fehlt das Merkmal 2. Mal: Wert aus der letzten Beschreibenden Sortenliste wird übernommen und um eine Note verschlechtert
 - ⇒ fehlt das Merkmal 3. Mal: kein Ersatzwert ⇒ keine Empfehlung
- > Mindestempfehlungsdauer: 3 Jahre
- > Auslauf:
 - ⇒ WRP und kleinkörnige Leguminosen 2 Jahre
 - ⇒ andere Arten: 1 Jahr
- WD Grünland: in jeder Erntegruppe (f/m/s) min. 1 diploide Sorte (gegebenenfalls hierzu für diese 3 Sorten Absenkung der Schwellen nötig)
- > Sorte muss für Bayerns Mischer verfügbar sein um bei BQSM gelistet zu sein

Verbesserung der Anfrage angestrebt durch zeitgleiches
Versenden der Empfehlungsgrundlage Ertrag/Rost
an Züchter und Mischer

> davon unabhängig sind auch leistungsstarke Sorten in der amtlichen Empfehlung

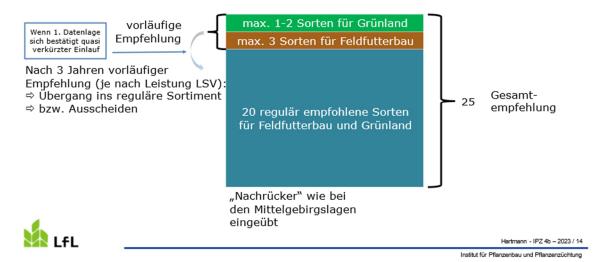
LfL (z.B. von Exklusivsorten), wenn sinnvoll

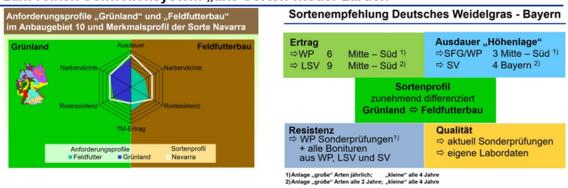
Hartmann - IPZ 4b - 2023 / 13

Institut für Pflanzenbau und Pflanzenzüchtung

Abb. 208: Erinnerung an weiterbestehende Regeln

Das Sortiment WD wird dann folglich wie folgt aussehen:




Abb. 209: Das Sortiment WD wird dann folglich wie folgt aussehen

Das Sortiment WV wird dann analog folglich wie folgt aussehen:

Abb. 210: Das Sortiment WV wird dann analog folglich wie folgt aussehen

Die Aktualisierung bringt also nicht wie beim Übergang zum reinen Schwellensystem "alte Sorten wieder zurück

Hartmann - IPZ 4b - 2023 / 18

Institut für Pflanzenbau und Pflanzenzüchtung

Abb. 211: Die Aktualisierung bringt keine alten Sorten zurück

Wünsche der Länderdienststellen ⇒ Alle Daten um den Auftrag optimal zu erfüllen

Der Auftrag ist es die Sorten mit der jeweils besten Eignung für die jeweils <u>regionalen</u>

Bedingungen (Klima, Boden, Erregerspektrum, Nährstoffverfügbarkeit, Auflagen),

Nutzungen: Grünland (Wiese/Weide), Feldfutterbau (Nutzungsdauer), Nutzungsintensität

und

Verwertung: Tier (Rinder [Mutterkuh, Milchvieh, Jungvieh], Schafe, Ziegen, Hühner...) oder Biogas

herauszufinden

House for France load and France about

Abb. 212: Wünsche der Länderdienststellen

8 Rechtliche Situation Agrovoltaik auf dem Grünland und anlaufendes Projekt in Bayern

Gawan Heintze & Daniel F. Eisel

Rechtliche Rahmenbedingungen bei Agri -PV auf dem Grünland und anlaufende Projekte in Bayern

Weihenstephaner Grünlandgespräche ins Freising am 19. März 2024

Gawan Heintze & Daniel F. Eisel

P 24 W HzEs 010

Abb. 213: Rechtliche Rahmenbedingungen bei Agri-PV auf dem Grünland

Beratung und Wissenstransfer

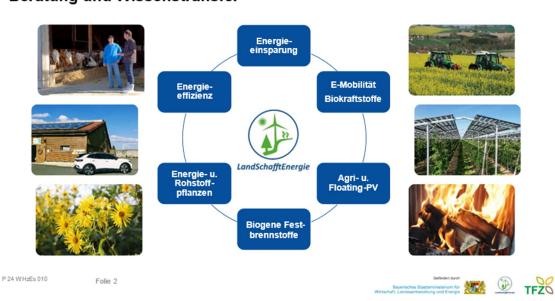


Abb. 214: Beratung und Wissenstransfer

TFZ6

Branchenverzeichnis / Agri -PV-Leitfaden Technologie- und Fürderzenn, im Kompetenzenn im Komp

Abb. 215: Branchenverzeichnis

P 24 W HzEs 010

Klimawandel - in wenigen Worten

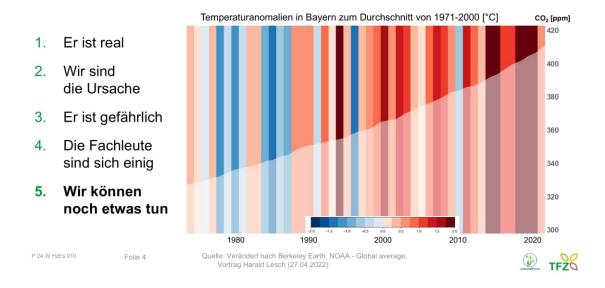


Abb. 216: Klimawandel – in wenigen Worten

Netto-PV-Zubau: Ist-Werte bis 2023 und Ausbaupfad EEG bis 2040

- Für D 2040: Photovoltaik -Leistung soll auf 400 GW_p steigen (aktuell ca. 82 GW_p)
- Davon 200 GW_p auf Gebäude und 200 GW_p auf die Freifläche

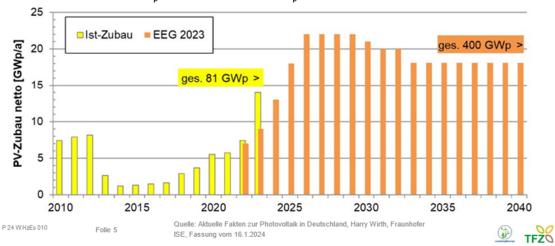


Abb. 217: Netto-PV-Zubau

Historische install. Leistungen und notwendige Nettoausbauraten von PV in Bayern

Abb. 218: Historische install. Leistungen und notwendige Nettoausbauraten

Lösungsansatz

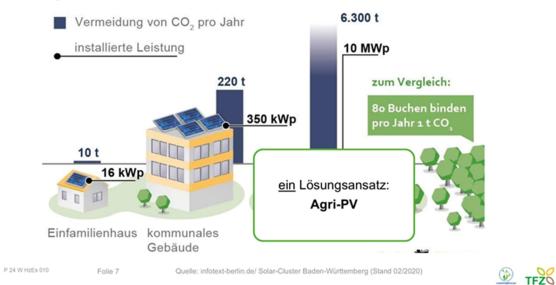


Abb. 219: Lösungsansatz

Ein Lösungsansatz - Agri-PV

Abb. 220: Ein Lösungsansatz – Agri-PV

Definition DIN SPEC 91434 - Agri-PV...

... ist die

primäre landwirtschaftliche Nutzung

und die

sekundäre solare Stromerzeugung

auf ein und der

selben Fläche.

Kat I: hoch aufgest. PV-Systeme

 Landwirtschaft findet unter den Modulreihen statt

Kat II: bodennahe PV-Systeme

 Landwirtschaft findet zwischen den Modulreihen statt

434 TFZ

min. 90 % landw. Fläche

bleiben erhalten

min. 85 % landw. Fläche bleiben erhalten

P 24 W HzEs 010

Folie 9 Heintze • Eisel Quelle: : Fraunhofer ISE, DIN SPEC 91434

Abb. 221: Definition DIN SPEC 91434 – Agri-PV

Landwirtschaftliche Bodennutzung in Bayern 2023

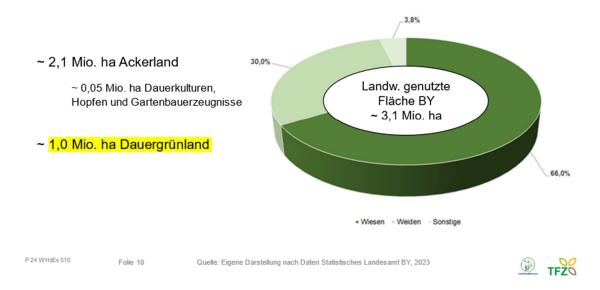


Abb. 222: Landwirtschaftliche Bodennutzung in Bayern 2023

Ertragsunterschiede verschiedener Feldfrüchte und Sonderkulturen

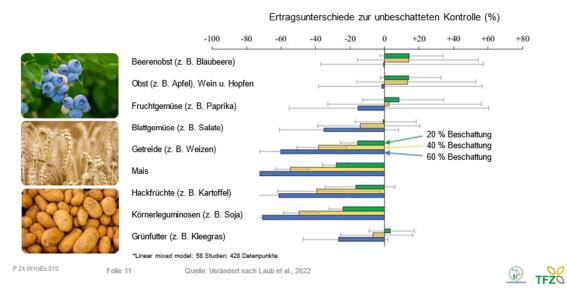


Abb. 223: Ertragsunterschiede

Agri-PV und Ackerbau

Abb. 224: Agri-PV und Ackerbau

Agri-PV und Ackerbau

Agri-PV und Ackerbau Abb. 225:

Agri-PV und Dauergrünland

Ort/Ausrichtung: Donaueschingen-Aasen, BW; Ost-West

Quelle: TFZ

- Installation/Fläche: 2020 auf ca. 14 ha
- Höhe/Durchfahrtsbreite: ca. 3 m/10 m
- Installierte Leistung: 4,1 MWp Kulturen: Extensives Grünland

Agri-PV und Dauergrünland Abb. 226:

Folie 16

P 24 W HzEs 010

Agri-PV und Dauergrünland

Abb. 227: Agri-PV und Dauergrünland bei der Beerntung

Forschung am TFZ (BaySG, Grub und LEW, Dietratried)

2 Pilotanlagen mit Referenzfläche in Grub und im Unterallgäu

- Wissenschaftliche Untersuchungen
 - Akzeptanz (zeitliche Entwicklung)
 - Auswirkung auf pflanzenbauliche Bewirtschaftung
 - · Einfluss auf das Mikroklima
 - Wirtschaftliche Untersuchung des Gesamtkonzepts
 - Einfluss auf die Biodiversität (Institut für Agrarökologie und Biologischen Landbau, LfL)
 - Begleitung der Bauphase
- Netzwerk und Beratung
- Wissenstransfer und Öffentlichkeitsarbeit → Leitfaden

P 24 W HzEs 010 Folie 21 Quelle: TFZ

Forschung am TFZ Abb. 228:

Pilotanlagen am Standort Dietratried (geplant) und Grub (gebaut)

Abb. 229: Pilotanlagen

Themenplattform PV im Energie-Atlas Bayern

Abb. 230: Themenplattform PV im Energie-Atlas Bayern

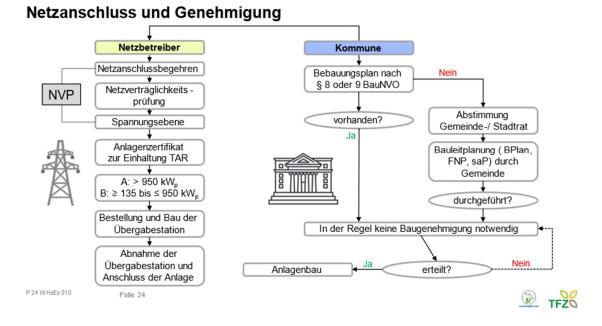


Abb. 231: Netzanschluss und Genehmigung

GAP Direktzahlungen -Verordnung § 12 Hauptsächliche Nutzung für eine landwirtschaftliche Tätigkeit

- (1) Eine landwirtschaftliche Fläche, die auch für eine nichtlandwirtschaftliche Tätigkeit genutzt wird, wird hauptsächlich für eine landwirtschaftliche Tätigkeit genutzt, wenn die landwirtschaftliche Tätigkeit auf der Fläche ausgeübt werden kann, ohne durch die nichtlandwirtschaftliche Tätigkeit stark eingeschränkt zu sein...
- (5) Eine Agri-Photovoltaik -Anlage im Sinne des Absatzes 4 Nummer 6 ist eine auf einer landwirtschaftlichen Fläche errichtete Anlage zur Nutzung von solarer Strahlungsenergie, die
- 1. eine Bearbeitung der Fläche unter Einsatz üblicher landwirtschaftlicher Methoden, Maschinen und Geräte nicht ausschließt und
- 2. die landwirtschaftlich nutzbare Fläche unter Zugrundelegung der DIN SPEC 91434:2021 höchstens 15 Prozent verringert. Förderfähig sind 85 Prozent der Fläche, die der Ermittlung des Prozentsatzes nach Satz 1 Nummer 2 zugrunde liegt

¹Die genannte DIN-SPEC-Norm ist bei der Beuth Verlag GmbH, Berlin, zu beziehen und ist in der Deutschen Nationalbibliothek archivmäßig gesichert niedergelegt.

GAP Direktzahlungen-Verordnung

P 24 W HzEs 010 Folie 25

Abb. 232:

Festlegung der BNetzA zu Dauergrünland

a) Die besonderen Solaranlagen müssen auf landwirtschaftlichen Flächen errichtet und betrieben werden, die als Dauergrünland genutzt werden. Dauergrünland im Sinne der Verordnung (EU) 2021/2115 des Europäischen Parlaments und des Rates¹ sind Flächen, die

auf natürliche Weise (Selbstaussaat) oder durch Einsaat zum Anbau von Gras oder anderen Grünfutterpflanzen genutzt werden und seit mindestens fünf Jahren nicht Bestandteil der Fruchtfolge des Betriebs sind, und - wenn die Mitgliedstaaten dies beschließen -Flächen, die seit mindestens fünf Jahren nicht umgepflügt wurden oder auf denen keine Bodenbearbeitung durchgeführt wurde oder die nicht mit anderen Typen von Gras oder anderen Grünfutterpflanzen neu gesät wurden. Es kann auch andere Arten wie Sträucher oder Bäume, die abgeweidet werden können, und andere Arten wie Sträucher oder

Bäume umfassen, die der Erzeugung von Futtermitteln dienen, sofern Gras und andere Grünfutterpflanzen weiterhin vorherrschen. Dauerweideland wird ebenfalls vom Begriff des Dauergrünlands umfasst.

P 24 W HzEs 010

Folie 26

Quelle: BNetzA, Festlegung Az. 4.08.01.01/1#4

Wo sind Anlagen förderfähig nach dem EEG 2023?

Im Bereich eines Bebauungsplans nach § 30 BauGB meistens:

- Versiegelte Flächen oder Konversionsflächen
- 500 m-Streifen entlang von Autobahnen oder Schienenwegen → 200 m-Streifen privilegiert (kein B-Plan von Nöten) → Agri-PV
- Benachteiligte Gebiete (iBALIS-Kartenviewer Agrar) → Agri-PV

P 24 W HzEs 010

Folie 27

Quelle: Florian Maack

TFZO

P 24 W HzEs 010

Erlösoptionen: EEG -Ausschreibungen und PPA Festvergütung Festvergütung Ausschreibung Stromliefervertrag (Marktprämienmodell) (Marktprämienmodell) (erstes Segment) (PPA) freie Vertragsgestaltung Ausschreibung für Kleinanlagen Bürgerenergie Großanlagen (ohne EEG) Anlagen > 1 MW_p Anlagengröße Anlagen ≤ 1 MW_n Anlagen ≤ 6 MW_n bis $< 20 \text{ MW}_p$ typ. $> 5 \text{ MW}_p$

Abb. 234: Erlösoptionen: EEG-Ausschreibungen und PPA

Quelle: ÖKO-Haus GmbH, TFZ

Aktuelle Marktwerte Solar und Ausschreibungsergebnisse BNetzA

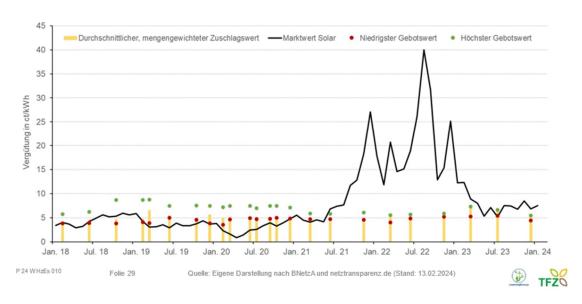


Abb. 235: Aktuelle Marktwerte Solar und Ausschreibungsergebnisse BNetzA

Stunden mit negativen Strompreisen (§ 51 EEG)

Abb. 236: Stunden mit negativen Strompreisen (§ 51 EEG)

Erzeugungsprofile der Photovoltaik und Börsenstrompreis

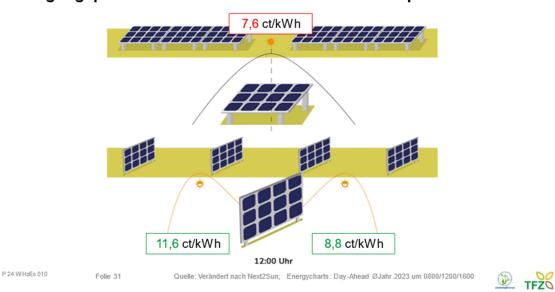


Abb. 237: Erzeugungsprofile der Photovoltaik und Börsenstrompreis

Gesetzliche Neuerungen 2023 und geplante Änderungen 2024

Agri-PV nun in der regulären Förderung (1. Segment der Ausschreibung) Technologie-Bonus für sog. Agri-PV-Anlagen mit horizontaler Aufständerung → Bonus ist degressiv ausgestaltet, aktuell 1,0 ct/kWh für 2024

GAP-Förderung für Agri-PV zu 85 % möglich (§ 12 Abs. 4 Nr. 6 GAPDZV) Erbschaftsteuerliche Begünstigungen für landwirtschaftliches Betriebsvermögen verbleiben in der Grundsteuer A

Privilegierung (§ 35 Abs. 1 Nr. 9 BauGB) das Vorhaben steht in einem räumlich funktionalen Zusammenhang mit einem Betrieb, auf einer Grundfläche von max. 2,5 ha

Auskömmliche Förderung: Bis zu 9,5 ct/kWh im Solarpaket I geplant Festlegungen BNetzA für Acker- (Az. 8175-07-00-21/1) und Dauergrünland (Az. 4.08.01.01/1#4) beachten

Extensivierung der Agri-PV (§ 38b Abs. 1a): Eine extensivere Bewirtschaftung bei Agri-PV-Anlagen, bei denen die Module vertikal oder mit einer lichten Höhe von mind. 2,10 Metern aufgeständert sind, erhalten einen Bonus (0,3 ct/kWh)

P 24 W HzEs 010

Folie 32

Abb. 238: Gesetzliche Neuerungen 2023 und geplante Änderungen 2024

Potentiale der Agri -Photovoltaik in Bayern

ca. 28 GW_p <u>PV-Zubau</u> als "Freifläche" bis 2040 in Bayern notwendig:

	STEEL STEEL	The state of the s
	Agri-PV Kat. I	Agri-PV Kat. II
spez. Leistung [kW _p /ha]	~ 800	~ 400
landwirtschaftlich genutzte Fläche (Bayern)	3,1 Mio. ha	
NUR 2 % davon bedeuten:	62.000 ha	
Möglicher Zubau [GW _p]	50	25

P 24 W HzEs 010

Folie 33

Quelle: BayWa r.e., TFZ, Aktuell 2023: PV 22 GW $_{\rm p}$ Ziel 2040: 77 GW $_{\rm p}$ davon 1/2 FFA $\,
ightarrow$ 28 GW $_{\rm p}$

Abb. 239: Potentiale der Agri-Photovoltaik in Bayern

Chancen

- Landwirtschaft bleibt erhalten → Steigerung der Landnutzungseffizienz
- Ökologische Synergieeffekte / Steigerung der Klimaresilienz → z. B. Schutzfunktionen vor Hagel, Frost- und Dürreschäden
- Einkommensdiversifizierung der Landwirte → Privilegierung§ 35 BauGB
- EEG 2023: Agri-PV ist auf Acker- und Grünlandflächen förderfähig
- Agrarsubventionen der GAP bleiben zu 85 % erhalten →§ 12 GAPDZV
- · Akzeptanz in der Bevölkerung potentiell höher
- Vorteile bei Erbschafts und Grundsteuer (z. B. bei Hofübergabe)

Herausforderungen

- höhere Investitionskosten gegenüber konventioneller PVFFA
- · aufwändigere Bewirtschaftung in Abhängigkeit des Systems

P 24 W HzEs 010

Folie 34

Abb. 240: Chancen und Herausforderung

LSE-Newsletter

Gawan Heintze

Technologie - und Förderzentrum (TFZ) Tel.: +49 (0) 9421 300 -270 E-Mail: landschafftenergie@tfz.bayern.de

P 24 W HzEs 010

Folie 35

Abb. 241: Kontaktdaten

9 Vergleich von Fotovoltaiksystemen auf Grünlandflächen in verschiedenen Klimaregionen Österreichs

Dr. Andreas Schaumberger HBLFA/A

HBLFA Raumberg-Gumpenstein Landwirtschaft

Eine Einrichtung des Bundes ministeriums für Land- und Forstwirtschaft, Regionen und Wasserwirtschaft

Workshop: Wertschöpfung durch Fotovoltaik und Artenvielfalt im Grünland

PV-Grass: Projektkonzept

Vergleichende Untersuchung verschiedener Photovoltaikanlagen auf Grünlandflächen und deren Auswirkungen auf die landwirtschaftliche Nutzung

Andreas Schaumberger HBLFA Raumberg-Gumpenstein

Weihenstephaner Grünlandgespräche Freising, 18.-19. März 2024

Abb. 242: PV-Grass: Projektkonzept

Abb. 243: Systematischer qualitativer und quantitativer Vergleich einer Grünlandnutzung mit und ohne Photovoltaik

■ HBLFA Raumberg-Gumpenstein Landwirtschaft

Eine Einrichtung des Bundesministeriums für Land- und Forstwirtschaft. Regionen und Wasserwirtschaft

Photovoltaikflächenanlage versus Agrophotovoltaikanlage

Vorteile der Photovoltaik-Flächenanlage	Nachteile der Photovoltaik-Flächenanlage
 Höhere Energieausbeute Flächen auch mit größeren Hangneigungen Schwer zu bewirtschaftende Flächen Geringe spezifische Errichtungskosten bzw. Stromgestehungskosten 	 Extensive, naturschützenswerte Standorte Gefährdung einer potenziell hohen Biodiversität Beeinträchtigung des Landschaftsbildes Vergleichsweise großer Bodenverbrauch
Vorteile der Agrophotovoltaikanlage	Nachteile der Agrophotovoltaikanlage
 Nutzungskombination mit Landwirtschaft Positive Effekte für Evapotranspirationsrate (Verminderung von Trockenstress) Erhöhung von Biodiversität bei intensiver Nutzung 	Geringere Energieausbeute Beeinträchtigung mechanischer Bewirtschaftung Beeinträchtigung des Landschaftsbildes

Weihenstephaner Grünlandgespräche

raumberg-gumpenstein.at

Abb. 244: Photovoltaikflächenanlage versus Agrophotovoltaikanlage

HBLFA Raumberg-Gumpenstein Landwirtschaft

Eine Einrichtung des Bundes ministeriums für Land- und Forstwirtschaft, Regionen und Wasserwirtschaft

Forschungsschwerpunkte

- Einfluss auf Grünlandertrag und Futterqualität
 - Vergleich zwischen intensivenund extensiven Nutzungsformen
 - Agrarmeteorologische Einflussfaktoren (Abschattung, Evapotranspiration)
- Kombinationsmöglichkeitenmit der Haltung von Nutztieren
 - Haltung von Wiederkäuern, kleinen Wiederkäuern, Geflügel
 - Einfluss auf Ertrag, Boden und Pflanzenbestand
- · Technische und betriebswirtschaftliche Bewertung von Pflege und Bewirtschaftung
 - Möglichkeiten und Anforderungender technischen Ausstattung
 - Bewertung des Mehraufwandesan Arbeitszeit
- Biodiversität Auswirkungen und Veränderungen
 - Direkter Vergleich zwischen intensiverund extensiver Grünlandnutzung
 - Begleitende Maßnahmen zur Förderung der pflanzlichen Biodiversität (Blühstreifen, Randstrukturen)
 - Evaluierungder tierischen Biodiversität

Weihenstephaner Grünlandgespräche

raumberg-gumpenstein.at

Abb. 245: Forschungsschwerpunkte

HBLFA Raumberg-Gumpenstein Landwirtschaft

Eine Einrichtung des Bundesministeriums für Land, und Enrytwittschaft, Regionen und Wasserwittschaft

Anforderungen und Rahmenbedingungen

- Mehrere klimatische unterschiedliche Standorte mit vergleichbarer Bewirtschaftung
 - Schwerpunkt Grünlandregionen Alpenvorlandund Alpenhauptkamm
 - Agrarmeteorologische Einflussfaktoren (Abschattung, Evapotranspiration)
- Vergleich von Photovoltaikanlagen mit kombinierter Grünlandbewirtschaftung
 - Flächenanlage kombiniert mit Weidenutzung
 - Agro-PV-Anlage kombiniert mit Mähnutzung
- Referenzfläche mit zwei unterschiedlichen Nutzungsintensitäten
 - Extensive Nutzung mit 2 Schnitten
 - Intensive Nutzung mit 4 Schnitten (in Abstimmung mit der Agro-PV-Fläche)
- Begleitendende agrarmeteorologische Messungen
 - Wartungsfreie Wetterstationen mit Bodensensoren auf allen Teilflächen
 - Erfassung des Mikroklimas und dessen Auswirkungen auf den Ertrag

Weihenstephaner Grünlandgespräche

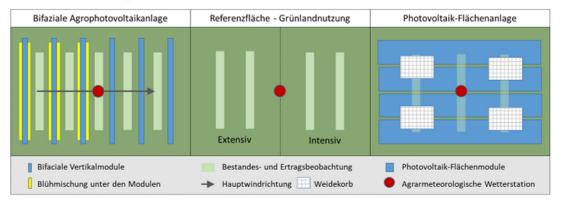

raumberg-gumpenstein.at

Abb. 246: Anforderungen und Rahmenbedingungen

 ➡ HBLFA
 Eine Einrichtung des Bundesministeriums für Land-wirtschaft

 Land-wirtschaft
 Land- und Forstwirtschaft, Regionen und Wassenwirtschaft

Versuchskonzept

Weihenstephaner Grünlandgespräche

raumberg-gumpenstein.at

Abb. 247: Versuchskonzept

HBLFA Raumberg-Gumpenstein Landwirtschaft

Eine Einrichtung des Bundesministeriums für and, und Enrytwittschaft Regionen und Wasserwittschaft

Aktueller Stand

Sonnenpark Eugendorf bei Salzburg

- Anlage geht in den nächsten Monaten in Betrieb
- Forschungs-Testbetrieb: Blühstreifenanlageund Datenerhebungen 2024

Forschungsstation Land Steiermark – LFS Grottenhof-Hardt

- Planungen weitgehend abgeschlossen, Umsetzung 2025

Agro-PV-Anlage Ennstal

- Flächenauswahlnoch nicht abgeschlossen
- Kooperation mit Gemeinden und Energiebetreiber (Wien Energie)

• Agro-PV-Anlage Scheibbs (Niederösterreich)

- Flächenbesichtigung im April 2024, Unterstützungvon Land und Gemeinde

• Agro-PV-Anlage Vöcklabruck (Oberösterreich)

Planungsphasemit Ausrichtungauf das ForschungskonzeptGumpenstein

Weihenstephaner Grünlandgespräche

raumberg-gumpenstein.at

Abb. 248: Aktueller Stand

Fotovoltaik im Grünland anlaufende Projekte in Baden Württemberg und Sachsen

10.1 Projekt Agri-PV auf Dauergrünland im Rahmen der Modellregion Agri-PV Baden-Württemberg

Janine Nachtsheim

Abb. 249: Titelbild Projekt Agri-PV auf Dauergrünland

Hintergrund

Problematik

- Landwirtschaft ist von der globalen Klimaerwärmung betroffen
 - Trockenheit, Hitze, Starkregen etc.
- bis 2030 Anteil der erneuerbaren Energien bei der Stromproduktion bei mind. 80 % in Deutschland
- weiterer Ausbau von Photovoltaik notwendig
- > Landnutzungskonkurrenz durch stetigen Flächenverbrauch

→ Idee:

Doppelnutzung der Fläche:

Nahrungsmittelproduktion + Energieerzeugung = Agri-PV

Weihenstephaner Grünlandgespräche 2024 - Janine Nachtsheim

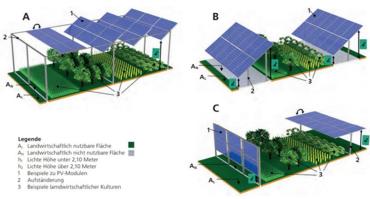


Abb. 250: Problematik

Hintergrund

Agri-PV-Systeme

Kategorie I: Aufständerung mit lichter Höhe >2,1 m Bewirtschaftung unter der Anlage Kategorie II: Bodennahe Aufständerung < 2,1 m Bewirtschaftung zwischen den Anlagereihen

© Agri-Photovoltaik Chance für Landwirtschaft und Energiewende, Fraunhofer 2024

Weihenstephaner Grünlandgespräche 2024 - Janine Nachtsheim

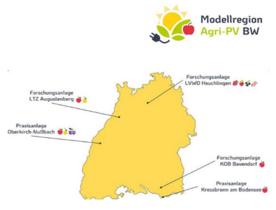


Abb. 251: Agri-PV-System

Hintergrund

Modellregion Agri-PV BW

- Schwerpunkt im Rahmen des Projektes bisher auf Sonderkulturen (vorrangig Obst- und Beeren-Kulturen)
- Projektziel: Beantwortung noch offener Fragen zur doppelten Nutzung von Flächen für Landwirtschaft und Solarstromerzeugung
- unter anderem Untersuchung der Effekte der variierenden Beschattung auf die Pflanze
- Erstellung von Handbüchern für die landwirtschaftliche Praxis und für Genehmigungsbehörden

Pilotanlagen der ersten Umsetzungsphase des Projektes© Fraunhofer ISE

→ Mit Start des neuen Projekts nun auch Versuchsflächen auf Dauergrünland (Praxisbetriebe)

Weihenstephaner Grünlandgespräche 2024 - Janine Nachtsheim

Abb. 252: Modellregion Agri-PV BW

Projektvorstellung

Teilprojekt "Agri-PV auf Dauergrünland"

Projektlaufzeit Finanzierung: Ministerium für Ernährung, Ländlichen Raum und Verbraucherschutz Kooperationsprojekt: Duale Hochschule Baden-Württemberg (Ravensburg) & Landwirtschaftliches Zentrum für Rinderhaltung, Grünlandwirtschaft, Milchwirtschaft, Wild und Fischerei

Projektvorstellung

Ziele des Projektes

- Auswirkungen der PV-Anlagen auf die Grünlandbewirtschaftung und den Grünlandbestand beurteilen und quantifizieren zu können
- Untersuchung der Auswirkungen der Agri-PV-Anlage
 - auf die Bewirtschaftung
 - den Ertrag und die Qualität der Aufwüchse
 - botanische Zusammensetzung und Biodiversität
 - auf das Mikroklima
- > Erstellung von Ergebnisberichten sowie Handreichungen für die Praxis
- Wissenstransfer

Weihenstephaner Grünlandgespräche 2024 - Janine Nachtsheim

Abb. 254: Ziele des Projektes

Projektflächen

Versuchsflächen

Ziel: 5 Praxisbetriebe – unterschiedliche Naturräume und Bewirtschaftungsformen

Weihenstephaner Grünlandgespräche 2024 - Janine Nachtsheim

Projektflächen

Insbesondere Augenmerk auf senkrecht aufgeständerte bifaziale Module

Weihenstephaner Grünlandgespräche 2024 - Janine Nachtsheim

Abb. 256: Insbesondere Augenmerk auf senkrecht aufgeständerte bifaziale Module

Abb. 257: Kontaktdaten

Literatur

Fraunhofer ISE (2023): Modellregion Agri-PV BW, URL: https://www.agripv-bw.de (Stand: 15.03.2024)

Fraunhofer ISE (2024): Agri-Photovoltaik: Chance für Landwirtschaft und Energiewende. Ein Leitfaden für Deutschland. 3. Auflage, Februar 2024

Weihenstephaner Grünlandgespräche 2024 - Janine Nachtsheim

Abb. 258: Literatur

10.2 Projektbeschreibung zur Forschungs- und Demonstrationsanlage Agri-PV am Lehr- und Versuchsgut Köllitsch

André Hatscher LfULG

Das LVG Köllitsch liegt ca. 50 km östlich von Leipzig und ca. 15 km südöstlich von Torgau. Für die Forschungs- und Demonstrationsanlage Agri-PV Köllitsch soll die Ausführungsplanung ab 06/2024 beginnen und der Baubeginn ist nicht vor 04/2025 zu erwarten.

Vorläufige Planung der Agri-PV-Anlage im Grünland

- Solarzaun: Länge 100 m; Höhe 1,40 m; Leistung: ca. 21 kWp; 50 Module
- Solarunterstand: Länge 30 m; Höhe 2,10 3,40 m; Leistung: ca. 64 kWp; 150 Module
- Gesamt: Leistung: 85 kWp, Stromertrag: 89 MWh/a

Vorläufige Planung der Agri-PV-Anlage auf Ackerland

- vertikal aufgeständertes System mit Ost-West-Ausrichtung
- 13 Modulreihen; Modulreihenlänge: 75 m, 936 Module; ca. 2,8 m hoch
- Leistung: 398 kWp, jährlicher Stromertrag: 426 MWh
- Testfläche ca. 246 m x 152 m (ca. 3,6 ha)
 - 2 Referenzflächen im Norden und Süden der Anlage mit je 38 m Länge
 - O Vorgewende um die gesamte Fläche mit ca. 27 m
 - o 6 Parzellen für verschiedene Kulturen, einschließlich einer Wiederholung
 - Einsatz von Spritztechnik mit einer Arbeitsbreite von 27 m -> Reihenabstand von 27 m + 1,5 m Sicherheitsabstand an beiden Seiten
 - Reihenabstand von 9 m für konventionelle Landmaschinen und autonome Systeme

Geplante Forschungsschwerpunkte

Landwirtschaftliche Nutzung

- Einfluss der Verschattung bzw. Teilverschattung des Bestandes
 - Wachstum von Pflanzen wird durch die im Verhältnis knappste Ressource eingeschränkt (Minimumfaktor)
 - o Verträglichkeit unterschiedlicher Anbaukulturen
- Einfluss von spezifischen Wetterlagen
 - o z.B. heiße und trockene Jahre im Vergleich zu kühleren und niederschlagsreicheren Jahren, Wind, Starkregen, Hagel, Frost

- Erfassen von mikroklimatischen Veränderungen (Feuchtigkeit, Temperatur, Wind)
- Einfluss auf Pflanzenpathogene, Nützlinge und Schädlinge
 - o z.B. Pilzerkrankungen, Mäuse, ...
- Einfluss auf Arbeitsabläufe
 - o Bodenbearbeitung, Aussaat, Pflanzenschutz, Ernte
 - o Arbeitsgeschwindigkeit, autonome/teilautonome Steuerung
- Nutzungsformen für Sicherheitsstreifen als Blühstreifen oder Grünstreifen
- Kombination mit autonomer Landtechnik -> Synergien

Energieerzeugung

- Einfluss des Pflanzenbestandes auf die Energieerzeugung
 - o Verschattung der Module, Albedoeffekt
 - o Temperatureinflüsse (Evapotranspiration)
- Einfluss der Feldbewirtschaftung auf die PV-Technik (PV Module, Aufständerung, Wechselrichter, Kabel)
 - o z.B. Staub, Steinschlag
 - Langzeitauswirkungen durch Pflanzenschutz- und Düngemittel auf die Unterkonstruktion und die PV-Module
- Einfluss der Tierhaltung auf die PV-Technik: z.B. Verbiss, Verschmutzung, ...

Wirtschaftlichkeit

- Investitionskosten
- Nebenkosten -> Arbeitszeit, Betriebsmittel, Pflege- und Wartungsaufwand, ...
- Ertrag und Qualität des Ernteguts
- Betreibermodelle: Einspeisen oder Eigenverbrauch -> Kombination mit EMS, Kombination mit elektrischen Maschinen
- Steigerung der Wirtschaftlichkeit durch autonome Technik?
- Einzelerträge der Energieerzeugung und der Landwirtschaft: Gesamtökonomische Betrachtung

Weitere Informationen:

- Webseite des LfULG zum Thema Agri-Photovoltaik <u>https://www.landwirtschaft.sachsen.de/kombination-von-landwirtschaft-und-photovoltaik-57868.html</u>
- Agri-PV Kombination von Landwirtschaft und Photovoltaik Schriftenreihe des LfULG, Heft 1/2022 https://publikationen.sachsen.de/bdb/artikel/39194

 Kostenloser Download der DIN SPEC 91434:2021-05 beim Beuth Verlag GmbH

https://www.beuth.de/de/technische-regel/din-spec-91434/337886742

Resümee und Ausblick 137

11 Resümee und Ausblick

Dr. Stephan Hartmann

Es ist mir eine große Freude den Tagungsband der zweiten Weihenstephaner Grünlandgespräche vorlegen zu können. Dieser Tagungsband ist nun wie bereits angekündigt aus Gründen der Arbeits-kapazität schlanker als der erste Tagungsband und der der kommenden Tagung 2025. Teilnehmerinnen und Teilnehmer diskutierten jedoch genauso kenntnisreich und engagiert wie 2023.

Das Thema "Wertschöpfung durch Fotovoltaik und Artenvielfalt im Grünland", das in Absprache mit dem StMELF gewählt wurde regte zu einer intensiven Diskussion an

Kernaussagen der Diskussion zu Fotovoltaik und Wertschöpfung:

Es wäre besser, wenn EEG und landwirtschaftliches Fachrecht stärker getrennt würden. So läge die Definition, was landwirtschaftliche Nutzfläche ist eindeutig beim Landwirtschaftsministerium müsste dann auch von dort zertifiziert und kontrolliert werden. Inwieweit die Kontrolle im Rahmen von INVE-KOS dafür hinreichend ist bzw. was im Detail wie noch darüber hinaus und vor allem von wem zu kontrollieren wäre konnte nicht abschließend geklärt werden.

Agri-PV-Anlage bleibt Jagdfläche. Eine PV-Anlage ist keine Jagdfläche mehr, wenn sie aus der landwirtschaftlichen Nutzfläche fällt oder sie eingezäunt ist.

Grundsätzlich wäre es sinnvoll, PV-Anlagen nicht auf wertvollem Ackerboden oder allgemein knapper landwirtschaftlicher Nutzfläche, sondern verbrauchernah durch Überdachung von Parkplatzen, vorhandenen Dachflächen (evtl. Einschränkung durch Statik) oder PV-Überdachung von Parkplätzen zu nutzen. Bei Parkplatz-PV gibt es schon andere Bundesländer, z.B. Baden-Württemberg, die Bayern ein Stück voraus sind und tatsächlich hierzu eine Pflicht eingeführt haben. In Frankreich ist diese Pflicht sogar für Bestandsparkplätze eingeführt, bis 2027 muss jeder Parkplatz mit Photovoltaik überdacht werden. Die Schweiz hat ihre kompletten Autobahn-Lärmschutzwände – und wälle mit PV belegt.

Limitierender Faktor für den Ausbau von PV ist ein oft fehlender Netzausbau.

Warum also Agri-PV? Weil es aktuell eben keine Hinwendung des PV-Ausbaus von landwirtschaftlichen Nutzflächen hin zu Lösungen auf nichtlandwirtschaftlichen Flächen gibt, sondern es wird vermehrt landwirtschaftliche Nutzfläche der landwirtschaftlichen Nutzung entzogen. D.h. Beratung und Forschung müssen sich diesem Thema Agri-PV stellen, weil diese wenigstens eine weitere landwirtschaftliche Nutzung erlaubt.

In die Ausgestaltung der Normen für Agri-PV war der Agrarsektor nach Meinung der Teilnehmer nicht genügend beteiligt. So ist die Teilnahme an einem neuen Konsortium, das eine neue DIN-Norm er-arbeitet, in den ersten vier Wochen grundsätzlich offen. Hier fehlt offensichtlich dem Agrarsektor im Gegensatz zu den einschlägigen Firmen die Kenntnis zu

Ausschreibung und Vorgehen hierbei. Denn im Ergebnis ist der Agrarsektor an den Gremien, die sich mit PV beschäftigen, zu gering beteiligt.

Es entstanden und entstehen jedoch mehrere Forschungsanlagen zu Agri-PV auch für Grünland. Die aktuelle Vorgabe, dass die Fläche maschinell beerntbar sein muss, ist besonders im hängigen Ge-lände eine Herausforderung und bei der Integration in eine bestehende Weidehaltung nicht unproblematisch.

Kernaussagen der Diskussion zu Diversität und Wertschöpfung:

Neben der Erhaltung artenreichen Grünlandes gewinnen Wiederherstellungsbemühungen zunehmend an Bedeutung. Diese werden in unterschiedlichen Grünlandökosystemen und mit teils gemischtem Erfolg durchgeführt. Systematische, evidenzbasierte Untersuchungen, die Erfolg und Misserfolg unterschiedlicher Strategien evaluieren, fehlen aber größtenteils.

Die Wiesenmeisterschaften zeigen beispielhaft auf, dass die innerbetriebliche Verwertung artenreicher Grünlandflächen erfolgreich möglich ist.

Die Tierernährung zeigt Bereiche, in denen diese Aufwüchse sinnvoll genutzt werden können. Bei-spiele sind:

Rindfleischerzeugung mit Kalbinnen oder Ochsen auf der Weide.

Insbesondere Heu aus artenreichen Grünlandaufwüchsen weist eine vorteilhafte Nährstoffzusammensetzung auf und eignet sich für die Fütterung von Freizeitpferden.

Heu aus artenreichen Grünlandaufwüchsen eignet sich für die Fütterung von trockenstehenden Milchkühen. Damit können auch intensiv wirtschaftende Milchviehbetriebe auf Teilflächen artenreiches Grünland bewirtschaften. Dies führt zum Konzept der "abgestuften Grünlandnutzung", in dem die Aufwüchse von Flächen unterschiedlicher Nutzungsintensität in einem gesamtbetrieblichen Ansatz wirtschaftlich in der Tierhaltung verwertet werden.

Moor bzw. wiedervernässte Grünlandflächen, ebenso wie Alm-/Alpflächen, müssen flächen- und standortspezifisch genutzt werden. Aber auch diese Flächen lassen sich in ein gesamtbetriebliches Nutzungssystem integrieren.

Es ist zu prüfen, ob neue Weidesysteme ("Mob Grazing") einen verbesserten Beitrag zur Biodiversität liefern können.

Dank

Diese Veranstaltung wurde nun bereits das zweite Mal durchgeführt. Das Format der Veranstaltung, mit der Teilung in intensive Projektbesprechung am ersten Tag und einem Workshop am zweiten Tag, hat sich bewährt.

Der Erfolg der Weihenstephaner Grünlandgespräche wurde mit dem oben genannten Format in die Hände der Teilnehmer gelegt, denn er ist abhängig von deren Aktivität und

Resümee und Ausblick 139

Beiträgen. Und beide waren und sind, wie auch dieses Mal, stets engagiert und getragen von vielseitiger und hoher Expertise. Vielen Dank dafür.

Ein großer Dank geht dieses Jahr wieder an alle, die diese Tage erst ermöglichten. Die Liste der Helfer ist lang. Der Dank geht, wie bei jeder Tagung, zuerst an meine Arbeitsgruppe. Das sind: Leoni Forster, Gisela Kempf, Christine Maier, Heiko Neidlein, Jutta Neumayr, Regina Sommerer, David Stäblein, Ute Warthun und Andrea Wosnitza.

Sie haben sich mittlerweile routiniert bei dieser "on Top"-Arbeit sehr engagiert eingebracht und jeder hat mit seinen Stärken seinen Platz gefunden. Hier reichte die Arbeit von der Organisation, dem Auf- und Abbau, der Anmeldung, dem liebevollen Sorgen um das leibliche Wohl, die Stand- und Saal-dienste, der Technik bis hin zu den Fahrdiensten. Es war eine starke Teamleistung, die mich auch dieses Mal stolz gemacht hat, diesem Team anzugehören.

Dank geht weiter an Herrn Torsten Wolff für die Bereitstellung des Aufnahmegerätes, dessen Aufnahmequalität eigentlich ausgelegt ist für die Erkennung von Vogelstimmen, die Voraussetzung für die sehr gute Erkennung der gesprochenen Beiträge war.

Frau Hablawetz (AZV 4) sorgte für die Sicherstellung des notwendigen Datenschutzes – in den Formularen in für uns auch verständlicher Sprache, reduziert auf den konkret wirklich notwendigen Um-fang.

Vielen Dank an diese meist unsichtbaren Helfer, die den Teilnehmerinnen und Teilnehmern wie auch den Vortragenden die Tagung angenehmer gemacht haben.

Stephan Hartmann